352 Higher Engineering Mathematics
Since pV=kT,k=pV
THence dp=(
pV
T)VdT−(
pV
T)
TV^2dVi.e. dp=p
TdT−p
VdV(b) Total differential dT=∂T
∂pdp+∂T
∂VdVSince pV=kT,T=pV
khence∂T
∂p=V
kand∂T
∂V=p
kThus dT=V
kdp+p
kdV and substituting k=pV
T
gives:dT=V
(
pV
T)dp+p
(
pV
T)dVi.e. dT=T
pdp+T
VdVNow try the following exerciseExercise 140 Further problems on the
total differentialIn Problems 1 to 5, find the total differential dz.- z=x^3 +y^2 [3x^2 dx+ 2 ydy]
- z= 2 xy−cosx [( 2 y+sinx)dx+ 2 xdy]
- z=
x−y
x+y[
2 y
(x+y)^2dx−2 x
(x+y)^2dy]- z=xlny
[
lnydx+x
ydy]- z=xy+
√
x
y− 4
[(
y+
1
2 y√
x)
dx+(
x−√
x
y^2)
dy]- If z=f(a,b,c) and z= 2 ab− 3 b^2 c+abc,
find the total differential, dz.
[
b( 2 +c)da+( 2 a− 6 bc+ac)db
+b(a− 3 b)dc
]- Givenu=lnsin(xy)show that
du=cot(xy)(ydx+xdy).
35.2 Rates of change
Sometimes it is necessary to solve problems in which
different quantitieshave different rates of change. From
equation (1), the rate of change ofz,dz
dtis given by:dz
dt=∂z
∂udu
dt+∂z
∂vdv
dt+∂z
∂wdw
dt+··· (2)Problem 4. Ifz=f(x,y)andz= 2 x^3 sin2yfind
the rate of change ofz, correct to 4 significant
figures, whenxis 2 units andyisπ/6 radians and
whenxis increasing at 4 units/s andyis decreasing
at 0.5 units/s.Using equation (2), the rate of change ofz,dz
dt=∂z
∂xdx
dt+∂z
∂ydy
dtSincez= 2 x^3 sin2y,then∂z
∂x= 6 x^2 sin2yand∂z
∂y= 4 x^3 cos2ySincexis increasing at 4 units/s,dx
dt=+ 4and sinceyis decreasing at 0.5 units/s,dy
dt=− 0. 5Hencedz
dt=( 6 x^2 sin2y)(+ 4 )+( 4 x^3 cos2y)(− 0. 5 )
= 24 x^2 sin2y− 2 x^3 cos2yWhenx=2 units andy=π
6radians, thendz
dt= 24 ( 2 )^2 sin[2(π/ 6 )]− 2 ( 2 )^3 cos[2(π/ 6 )]= 83. 138 − 8. 0