Total differential, rates of change and small changes 355
Problem 8. Pressurepand volumeVof a gas are
connected by the equationpV^1.^4 =k. Determine
the approximate percentage error inkwhen the
pressure is increased by 4% and the volume is
decreased by 1.5%.Using equation (3), the approximate error ink,δk≈∂k
∂pδp+∂k
∂VδVLetp,Vandkrefer to the initial values.Since k=pV^1.^4 then
∂k
∂p=V^1.^4and
∂k
∂V= 1. 4 pV^0.^4Since the pressure is increased by 4%, the change in
pressureδp=4
100×p= 0. 04 p.Since the volume is decreased by 1.5%, the change in
volumeδV=− 1. 5
100×V=− 0. 015 V.Hence the approximate error ink,δk≈(V)^1.^4 ( 0. 04 p)+( 1. 4 pV^0.^4 )(− 0. 015 V)≈pV^1.^4 [0. 04 − 1. 4 ( 0. 015 )]≈pV^1.^4 [0.019]≈1. 9
100pV^1.^4 ≈1. 9
100ki.e.the approximate error inkis a 1.9% increase.Problem 9. Modulus of rigidityG=(R^4 θ)/L,
whereRis the radius,θthe angle of twist andLthe
length. Determine the approximate percentage error
inGwhenRis increased by 2%,θis reduced by
5% andLis increased by 4%.Using δG≈∂G
∂RδR+∂G
∂θδθ+∂G
∂LδLSince G=R^4 θ
L,∂G
∂R=4 R^3 θ
L,∂G
∂θ=R^4
Land∂G
∂L=−R^4 θ
L^2SinceRis increased by 2%,δR=2
100R= 0. 02 RSimilarly,δθ=− 0. 05 θandδL= 0. 04 LHenceδG≈(
4 R^3 θ
L)
( 0. 02 R)+(
R^4
L)
(− 0. 05 θ)+(
−R^4 θ
L^2)
( 0. 04 L)≈R^4 θ
L[0. 08 − 0. 05 − 0 .04]≈− 0. 01R^4 θ
L,i.e. δG≈−1
100GHence the approximate percentage error inGis a
1% decrease.Problem 10. The second moment of area of a
rectangle is given byI=(bl^3 )/3. Ifbandlare
measured as 40mm and 90mm respectively and the
measurement errors are−5mm inband+8mmin
l, find the approximate error in the calculated value
ofI.Using equation (3), the approximate error inI,δI≈∂I
∂bδb+∂I
∂lδl∂I
∂b=l^3
3and∂I
∂l=3 bl^2
3=bl^2δb=−5mmandδl=+8mmHenceδI≈(
l^3
3)
(− 5 )+(bl^2 )(+ 8 )Sinceb=40mm andl=90mm thenδI≈(
903
3)
(− 5 )+ 40 ( 90 )^2 ( 8 )≈− 1215000 + 2592000≈1377000mm^4 ≈ 137 .7cm^4Hence the approximate error in the calculated value
ofIis a 137.7cm^4 increase.Problem 11. The time of oscillationtof apendulum is given byt= 2 π√
l
g. Determine the
approximate percentage error intwhenlhas an
errorof0.2%toolargeandg0.1% too small.