Standard integration 369
For example,
∫
( 3 x+ 2 x^2 − 5 )dx=∫
3 xdx+∫
2 x^2 dx−∫
5dx=3 x^2
2+2 x^3
3− 5 x+c37.3 Standard integrals
Since integration is the reverse process of differentia-
tion thestandard integralslisted in Table 37.1 may be
deduced and readily checked by differentiation.
Table 37.1Standard integrals(i)∫
axndx=axn+^1
n+ 1+c(except whenn=−1)(ii)∫
cosaxdx=1
asinax+c(iii)∫
sinaxdx=−1
acosax+c(iv)∫
sec^2 axdx=1
atanax+c(v)∫
cosec^2 axdx=−1
acotax+c(vi)∫
cosecaxcotaxdx=−1
acosecax+c(vii)∫
secaxtanaxdx=1
asecax+c(viii)∫
eaxdx=1
aeax+c(ix)∫
1
xdx=lnx+cProblem 1. Determine (a)∫
5 x^2 dx(b)∫
2 t^3 dt.The standard integral,
∫
axndx=axn+^1
n+ 1+c(a) Whena=5andn=2then
∫
5 x^2 dx=
5 x^2 +^1
2 + 1+c=5 x^3
3+c(b) Whena=2andn=3then∫
2 t^3 dt=2 t^3 +^1
3 + 1+c=2 t^4
4+c=1
2t^4 +cEach of these results may be checked by differentiating
them.Problem 2. Determine
∫(
4 +3
7x− 6 x^2)
dx.∫
( 4 +^37 x− 6 x^2 )dxmay be written as
∫
4dx+∫ 3
7 xdx−∫
6 x^2 dx, i.e. each term is integrated
separately. (This splitting up of terms only applies,
however, for addition and subtraction.)Hence∫(
4 +3
7x− 6 x^2)
dx= 4 x+(
3
7)
x^1 +^1
1 + 1−( 6 )x^2 +^1
2 + 1+c= 4 x+(
3
7)
x^2
2−( 6 )
x^3
3+c= 4 x+3
14x^2 − 2 x^3 +cNote that when an integral contains more than one term
there is no need to have an arbitrary constant for each;
just a single constant at the end is sufficient.Problem 3. Determine(a)∫
2 x^3 − 3 x
4 xdx (b)∫
( 1 −t)^2 dt.(a) Rearranging into standard integral form gives:
∫
2 x^3 − 3 x
4 xdx=∫
2 x^3
4 x−3 x
4 xdx=∫
x^2
2−3
4dx=(
1
2)
x^2 +^1
2 + 1−3
4x+c=(
1
2)
x^3
3−3
4x+c=1
6x^3 −3
4x+c