Standard integration 371
Problem 9. Determine
(a)∫
7sec^24 tdt (b) 3∫
cosec^22 θdθ.(a) From Table 37.1(iv),
∫
7sec^24 tdt=( 7 )(
1
4)
tan4t+c=7
4tan4t+c(b) From Table 37.1(v),3∫
cosec^22 θdθ=( 3 )(
−
1
2)
cot2θ+c=−3
2cot 2θ+cProblem 10. Determine(a)∫
5e^3 xdx (b)∫
2
3e^4 tdt.(a) From Table 37.1(viii),
∫
5e^3 xdx=( 5 )(
1
3)
e^3 x+c=5
3e^3 x+c(b)
∫
2
3e^4 tdt=∫
2
3e−^4 tdt=(
2
3)(
−1
4)
e−^4 t+c=−1
6e−^4 t+c=−1
6e^4 t+cProblem 11. Determine(a)∫
3
5 xdx (b)∫(
2 m^2 + 1
m)
dm.(a)
∫
3
5 xdx=∫(
3
5)(
1
x)
dx=3
5lnx+c(from Table 37.1(ix))(b)
∫(
2 m^2 + 1
m)
dm=∫(
2 m^2
m+1
m)
dm=∫(
2 m+1
m)
dm=2 m^2
2+lnm+c=m^2 +lnm+cNow try the following exerciseExercise 145 Further problems on standard
integrals
In Problems 1 to 12, determine the indefinite
integrals.- (a)
∫
4dx (b)∫
7 xdx[
(a) 4x+c (b)7 x^2
2+c]- (a)
∫
2
5x^2 dx (b)∫
5
6x^3 dx
[
(a)2
15x^3 +c (b)5
24x^4 +c]- (a)
∫(
3 x^2 − 5 x
x)
dx (b)∫
( 2 +θ)^2 dθ⎡
⎢
⎢
⎣(a)3 x^2
2− 5 x+c(b) 4θ+ 2 θ^2 +θ^3
3+c⎤
⎥
⎥
⎦- (a)
∫
4
3 x^2dx (b)∫
3
4 x^4dx
[
(a)− 4
3 x+c (b)− 1
4 x^3+c]- (a) 2
∫√
x^3 dx (b)∫
1
4√ 4
x^5 dx
[
(a)4
5√
x^5 +c (b)1
9√ (^4) x (^9) +c
]
- (a)
∫
− 5
√
t^3dt (b)∫
3
75√
x^4dx
[
(a)
10
√
t+c (b)
15
7√ (^5) x+c
]