Some applications of integration 377
- Sketch the curvesy=x^2 +3andy= 7 − 3 x
and determine the area enclosed by them.
[20^56 square units] - Determine the area enclosed by the three
straight linesy= 3 x,2y=xandy+ 2 x=5.
[2^12 square units]
38.3 Mean and r.m.s. values
With reference to Fig. 38.5,
mean value,y=1
b−a∫baydxand r.m.s. value=
√
√
√
√{
1
b−a∫bay^2 dx}0 x 5 ax 5 byxyy 5 f(x)Figure 38.5
Problem 4. A sinusoidal voltagev=100sinωt
volts. Use integration to determine over half a cycle
(a) the mean value, and (b) the r.m.s. value.(a) Half a cycle means the limits are 0 toπradians.Mean value,y=1
π− 0∫π0vd(ωt)=1
π∫π0100sinωtd(ωt)=
100
π[−cosωt]π 0=100
π[(−cosπ)−(−cos 0)]=100
π[(+ 1 )−(− 1 )]=200
π
=63.66volts[Note that for a sine wave,mean value=2
π×maximum valueIn this case, mean value=2
π× 100 = 63 .66V](b) r.m.s. value=√{
1
π− 0∫π0v^2 d(ωt)}=√{
1
π∫π0(100sinωt)^2 d(ωt)}=√{
10000
π∫π0sin^2 ωtd(ωt)}
,which is not a ‘standard’ integral.
It is shown in Chapter 17 that
cos2A= 1 −2sin^2 A and this formula is used
whenever sin^2 Aneeds to be integrated.
Rearranging cos2A= 1 −2sin^2 Agivessin^2 A=1
2( 1 −cos2A)Hence√{
10000
π∫π0sin^2 ωtd(ωt)}=√{
10000
π∫π01
2( 1 −cos2ωt)d(ωt)}=√{
10000
π1
2[
ωt−sin2ωt
2]π0}=√ √ √ √ √ √ √
⎧
⎪⎪
⎨
⎪⎪
⎩10000
π1
2[(
π−sin2π
2)−(
0 −sin0
2)]⎫
⎪⎪
⎬
⎪⎪
⎭=√{
10000
π1
2
[π]}=√{
10000
2}
=100
√
2=70.71volts[Note that for a sine wave,r.m.s. value=1
√
2×maximum value.