380 Higher Engineering Mathematics
38.5 Centroids
Alaminais a thin flat sheet having uniform thickness.
Thecentre of gravityof a lamina is the point where
it balances perfectly, i.e. the lamina’scentre of mass.
When dealing with an area (i.e. a lamina of negligible
thickness and mass) thetermcentre of areaorcentroid
is used for the point where the centre of gravity of a
lamina of that shape would lie.
Ifxandydenote the co-ordinates of the centroidC
of areaAof Fig. 38.9, then:x=∫baxydx
∫baydxand y=1
2∫bay^2 dx
∫baydx0Area Ax 5 ax 5 byxy 5 f(x)yxCFigure 38.9Problem 7. Find the position of the centroid of
the area bounded by the curvey= 3 x^2 ,thex-axis
and the ordinatesx=0andx=2.If(x,y)are co-ordinates of the centroid of the given
area then:x=∫ 20xydx
∫ 20ydx=∫ 20x( 3 x^2 )dx
∫ 203 x^2 dx=∫ 203 x^3 dx
∫ 203 x^2 dx=[
3 x^4
4] 20
[x^3 ]^20=12
8=1.5y=1
2∫ 20y^2 dx
∫ 20ydx=1
2∫ 20( 3 x^2 )^2 dx8=1
2∫ 209 x^4 dx8=9
2[
x^5
5] 20
8=9
2(
32
5)8=18
5=3.6Hence the centroid lies at (1.5, 3.6)Problem 8. Determine the co-ordinates of
the centroid of the area lying between the curve
y= 5 x−x^2 and thex-axis.y= 5 x−x^2 =x( 5 −x).Wheny=0,x=0orx=5.
Hence the curve cuts thex-axis at 0 and 5 as shown
in Fig. 38.10. Let the co-ordinates of the centroid be
(x,y)then, by integration,x=∫ 50xydx
∫ 50ydx=∫ 50x( 5 x−x^2 )dx
∫ 50( 5 x−x^2 )dx=∫ 50( 5 x^2 −x^3 )dx
∫ 50( 5 x−x^2 )dx=[
5 x^3
3 −x^4
4] 5
0
[
5 x^2
2 −x^3
3] 5
08C64212345 xyy 55 x 2 x^2yx0Figure 38.10