382 Higher Engineering Mathematics
y061218123 xy 52 x^2x
yFigure 38.12(b) (i) When the shaded area of Fig. 38.12 is
revolved 360◦about thex-axis, the volume
generated=∫ 30πy^2 dx=∫ 30π( 2 x^2 )^2 dx=∫ 304 πx^4 dx= 4 π[
x^5
5] 30= 4 π(
243
5)
=194.4πcubic units(ii) When the shaded area of Fig. 38.12 is
revolved 360◦about they-axis, the volume
generated=(volume generated byx= 3 )
−(volume generated byy= 2 x^2 )=∫ 180π( 3 )^2 dy−∫ 180π(y2)
dy=π∫ 180(
9 −y
2)
dy=π[
9 y−y^2
4] 180
= 81 πcubic units(c) If the co-ordinates of the centroid of the shaded
area in Fig. 38.12 are(x,y)then:
(i) by integration,x=∫ 30xydx
∫ 30ydx=∫ 30x( 2 x^2 )dx18=∫ 302 x^3 dx18=[
2 x^4
4] 30
18=81
36=2.25y=1
2∫ 30y^2 dx
∫ 30ydx=1
2∫ 30( 2 x^2 )^2 dx18=1
2∫ 304 x^4 dx18=1
2[
4 x^5
5] 30
18=5.4(ii) using the theorem of Pappus:
Volume generated when shaded area is
revolved aboutOY=(area)( 2 πx).i.e. 81 π=( 18 )( 2 πx),from which, x=81 π
36 π=2.25Volume generated when shaded area is
revolved aboutOX=(area)( 2 πy).i.e. 194. 4 π=( 18 )( 2 πy),from which, y=194. 4 π
36 π=5.4Hence the centroid of the shaded area in
Fig. 38.12 is at (2.25, 5.4).Problem 10. A metal disc has a radius of 5.0cm
and is of thickness 2.0cm. A semicircular groove of
diameter 2.0cm is machined centrally around the
rim to form a pulley. Determine, using Pappus’
theorem, the volume and mass of metal removed
and the volume and mass of the pulley if the density
of the metal is 8000kgm−^3.A side view of the rim of the disc is shown in Fig. 38.13.5.0 cm2.0 cmX XSRQPFigure 38.13