Some applications of integration 387
IPP=Ak^2 PP, from which,kPP=√
IPP
area=√(
645000
600)
=32.79mmProblem 13. Determine the second moment of
area and radius of gyration about axisQQof the
triangleBC Dshown in Fig. 38.20.QQC D
6.0 cm12.0 cm8.0 cmGBGFigure 38.20Using the parallel axis theorem: IQQ=IGG+Ad^2 ,
where IGG is the second moment of area about the
centroid of the triangle,
i.e.
bh^3
36=( 8. 0 )( 12. 0 )^3
36=384cm^4 ,Ais the area of the triangle,=^12 bh=^12 ( 8. 0 )( 12. 0 )=48cm^2anddis the distance between axesGGandQQ,
= 6. 0 +^13 ( 12. 0 )=10cm.Hence the second moment of area about axisQQ,
IQQ= 384 +( 48 )( 10 )^2 =5184cm^4Radius of gyration,
kQQ=√
IQQ
area=√(
5184
48)
=10.4cmProblem 14. Determine the second moment of
area and radius of gyration of the circle shown in
Fig. 38.21 about axisYY.Y3.0 cmYG Gr 5 2.0 cmFigure 38.21In Fig. 38.21,IGG=πr^4
4=π
4( 2. 0 )^4 = 4 πcm^4.Using the parallel axis theorem, IYY=IGG+Ad^2 ,
whered= 3. 0 + 2. 0 = 5 .0cm.Hence IYY= 4 π+[π( 2. 0 )^2 ]( 5. 0 )^2= 4 π+ 100 π= 104 π=327cm^4Radius of gyration,kYY=√
IYY
area=√(
104 π
π( 2. 0 )^2)
=√
26 =5.10cmProblem 15. Determine the second moment of
area and radius of gyration for the semicircle shown
in Fig. 38.22 about axisXX.X XG GB B10.0 mm15.0 mmFigure 38.22