Some applications of integration 389
Problem 18. Determine correct to 3 significant
figures, the second moment of area about axisXX
for the composite area shown in Fig. 38.25.4.0 cm
1.0 cm 1.0 cm
8.0 cmCTX X2.0 cm6.0 cm2.0 cmT TFigure 38.25For the semicircle,
IXX=πr^4
8=π( 4. 0 )^4
8= 100 .5cm^4For the rectangle,
IXX=bl^3
3=( 6. 0 )( 8. 0 )^3
3=1024cm^4For the triangle, about axisTTthrough centroidCT,
ITT=bh^3
36=( 10 )( 6. 0 )^3
36=60cm^4By the parallel axis theorem, the second moment of area
of the triangle about axisXX
= 60 +
[ 1
2 (^10 )(^6.^0 )][
8. 0 +^13 ( 6. 0 )] 2
=3060cm^4.Total second moment of area aboutXX
= 100. 5 + 1024 + 3060= 4184. 5=4180cm^4 ,correct to 3 significant figures.Problem 19. Determine the second moment of
area and the radius of gyration about axisXXfor the
I-section shown in Fig. 38.26.CFCECD3.0 cm
7.0 cm4.0 cm3.0 cmyCCX XSS15.0 cm8.0 cmFigure 38.26The I-section is divided into three rectangles,D,E
andFand their centroids denoted byCD,CEandCF
respectively.For rectangle D:
The second moment of area aboutCD(an axis through
CDparallel toXX)=bl^3
12=( 8. 0 )( 3. 0 )^3
12=18cm^4Using the parallel axis theorem:IXX= 18 +Ad^2whereA=( 8. 0 )( 3. 0 )=24cm^2 andd= 12 .5cmHenceIXX= 18 + 24 ( 12. 5 )^2 =3768cm^4.For rectangle E:
The second moment of area aboutCE(an axis through
CEparallel toXX)=bl^3
12=( 3. 0 )( 7. 0 )^3
12= 85 .75cm^4Using the parallel axis theorem:IXX= 85. 75 +( 7. 0 )( 3. 0 )( 7. 5 )^2 =1267cm^4.