394 Higher Engineering Mathematics
Now try the following exerciseExercise 153 Further problems on
integration using algebraic substitutions
In Problems 1 to 6, integrate with respect to the
variable.- 2sin( 4 x+ 9 )
[
−1
2cos( 4 x+ 9 )+c]- 3cos( 2 θ− 5 )
[
3
2sin( 2 θ− 5 )+c]- 4sec^2 ( 3 t+ 1 )
[
4
3tan( 3 t+ 1 )+c]4.
1
2( 5 x− 3 )^6[
1
70( 5 x− 3 )^7 +c]5.
− 3
( 2 x− 1 )[
−
3
2ln( 2 x− 1 )+c]- 3e^3 θ+^5 [e^3 θ+^5 +c]
In Problems 7 to 10, evaluate the definite integrals
correct to 4 significant figures.7.∫ 10( 3 x+ 1 )^5 dx [227.5]8.∫ 20x√
( 2 x^2 + 1 )dx [4.333]9.∫ π
3
02sin(
3 t+π
4)
dt [0.9428]10.∫ 103cos( 4 x− 3 )dx [0.7369]39.4 Further worked problems on
integration using algebraic
substitutions
Problem 7. Find∫
x
2 + 3 x^2dx.Letu= 2 + 3 x^2 thendu
dx= 6 xand dx=du
6 xHence
∫
x
2 + 3 x^2dx=∫
x
udu
6 x=1
6∫
1
udu,by cancelling=1
6lnu+c=1
6ln(2+ 3 x^2 )+cProblem 8. Determine∫
2 x
√
( 4 x^2 − 1 )dx.Letu= 4 x^2 −1thendu
dx= 8 xand dx=du
8 xHence∫
2 x
√
( 4 x^2 − 1 )dx=∫
2 x
√
udu
8 x=1
4∫
1
√
udu,by cancelling=1
4∫
u− 1(^2) du=
1
4
⎡
⎢
⎣
u
(− 1
2
)
- 1
−
1
2
1
⎤
⎥
⎦+c
1
4
⎡
⎢
⎣
u
1
2
1
2
⎤
⎥
⎦+c=
1
2
√
u+c
1
2
√
(4x^2 −1)+c
Problem 9. Show that
∫
tanθdθ=ln(secθ)+c.
∫
tanθdθ=
∫
sinθ
cosθ
dθ.Letu=cosθ
then
du
dθ
=−sinθand dθ=
−du
sinθ
Hence
∫
sinθ
cosθ
dθ=
∫
sinθ
u
(
−du
sinθ
)
=−
∫
1
u
du=−lnu+c
=−ln(cosθ)+c=ln(cosθ)−^1 +c,
by the laws of logarithms.