396 Higher Engineering Mathematics
- 3tan2t
[
3
2ln(sec2t)+c]7.2et
√
(et+ 4 )[
4√
(et+ 4 )+c]In Problems 8 to 10, evaluate the definite integrals
correct to 4 significant figures.8.∫ 103 xe(^2 x(^2) − 1 )
dx [1.763]
9.
∫ π
2
0
3sin^4 θcosθdθ [0.6000]
10.
∫ 1
0
3 x
( 4 x^2 − 1 )^5
dx [0.09259]
- The electrostatic potential on all parts of a
conducting circular disc of radiusris given
by the equation:
V= 2 πσ∫ 90R
√
R^2 +r^2dRSolvetheequationbydeterminingtheintegral.
[
V= 2 πσ{√
( 92 +r^2 )−r}]- In the study of a rigid rotor the following
integration occurs:
Zr=∫∞0( 2 J+ 1 )e−J(J+ 1 )h^2
8 π^2 Ik T dJDetermine Zr for constant temperatureT
assumingh,Iandkare constants.
[
8 π^2 IkT
h^2]- In electrostatics,
E=∫ π0⎧
⎨
⎩a^2 σsinθ2 ε√(
a^2 −x^2 −2axcosθ)dθ⎫
⎬
⎭where a,σandεare constants,xis greater
than a, andxis independent ofθ. Show thatE=a^2 σ
εx