Chapter 40
Integration using
trigonometric and
hyperbolic substitutions
40.1 Introduction
Table 40.1 gives a summary of the integrals that require
theuse oftrigonometric and hyperbolic substitutions
and their application is demonstrated in Problems 1
to 27.
40.2 Worked problems on integration
ofsin^2 x,cos^2 x,tan^2 xandcot^2 x
Problem 1. Evaluate∫ π
4
02cos^24 tdt.Since cos2t=2cos^2 t−1 (from Chapter 17),
then cos^2 t=
1
2( 1 +cos 2t)andcos^24 t =1
2( 1 +cos 8t)Hence
∫ π
4
02cos^24 tdt= 2∫ π
4
01
2( 1 +cos 8t)dt=[
t+sin8t
8]π
4
0=⎡
⎢
⎣π
4+sin8(π
4)8⎤
⎥
⎦−[
0 +sin0
8]=π
4or 0. 7854Problem 2. Determine∫
sin^23 xdx.Since cos2x= 1 −2sin^2 x(from Chapter 17),then sin^2 x=1
2( 1 −cos 2x)andsin^23 x =1
2( 1 −cos 6x)Hence∫
sin^23 xdx=∫
1
2( 1 −cos 6x)dx=1
2(
x−sin 6x
6)
+cProblem 3. Find 3∫
tan^24 xdx.Since 1+tan^2 x=sec^2 x,thentan^2 x=sec^2 x−1and
tan^24 x=sec^24 x−1.Hence 3∫
tan^24 xdx= 3∫
(sec^24 x− 1 )dx= 3(
tan 4x
4−x)
+c