424 Higher Engineering Mathematics
i.e.(
1 +a^2
b^2)∫
eaxcosbxdx=1
beaxsinbx+a
b^2eaxcosbxi.e.(
b^2 +a^2
b^2)∫
eaxcosbxdx=eax
b^2(bsinbx+acosbx)Hence∫
eaxcosbxdx=(
b^2
b^2 +a^2)(
eax
b^2)
(bsinbx+acosbx)=eax
a^2 +b^2(bsinbx+acosbx)+cUsing a similar method to above, that is, integrating by
parts twice, the following result may be proved:
∫
eaxsinbxdx=eax
a^2 +b^2(asinbx−bcosbx)+c (2)Problem 10. Evaluate∫ π
4
0etsin2tdt, correct to
4 decimal places.Comparing∫
etsin2tdtwith∫
eaxsinbxdxshows that
x=t,a=1andb=2.
Hence, substituting into equation (2) gives:
∫ π
4
0etsin2tdt=[
et
12 + 22(1sin2t−2cos2t)]π
4
0=[
eπ
4
5(
sin2(π
4)
−2cos2(π
4))
]−[
e^0
5(sin0−2cos0)]=[
eπ
4
5( 1 − 0 )]
−[
1
5( 0 − 2 )]
=eπ
4
5+2
5=0.8387,correct to 4 decimal places.Now try the following exerciseExercise 168 Further problems on
integration by partsDetermine the integrals in Problems 1 to 5 using
integration by parts.1.∫
2 x^2 lnxdx[
2
3x^3(
lnx−1
3)
+c]2.∫
2ln3xdx [2x(ln3x− 1 )+c]3.∫
x^2 sin3xdx
[
cos3x
27( 2 − 9 x^2 )+2
9xsin3x+c]4.∫
2e^5 xcos2xdx
[
2
29e^5 x(2sin2x+5cos2x)+c]5.∫
2 θsec^2 θdθ [2[θtanθ−ln(secθ)]+c]Evaluate the integrals in Problems 6 to 9, correct
to 4 significant figures.6.∫ 21xlnxdx [0.6363]7.∫ 102e^3 xsin2xdx [11.31]8.∫ π
2
0etcos3tdt [− 1 .543]9.∫ 41√
x^3 lnxdx [12.78]