Reduction formulae 427
From equation (1),In=xnex−nIn− 1
Hence
∫
x^3 exdx=I 3 =x^3 ex− 3 I 2
I 2 =x^2 ex− 2 I 1
I 1 =x^1 ex− 1 I 0and I 0 =
∫
x^0 exdx=∫
exdx=exThus
∫
x^3 exdx=x^3 ex−3[x^2 ex− 2 I 1 ]
=x^3 ex−3[x^2 ex− 2 (xex−I 0 )]
=x^3 ex−3[x^2 ex− 2 (xex−ex)]
=x^3 ex− 3 x^2 ex+ 6 (xex−ex)
=x^3 ex− 3 x^2 ex+ 6 xex−6exi.e.
∫
x^3 exdx=ex(x^3 − 3 x^2 + 6 x−6)+cNow try the following exercise
Exercise 169 Further problems on using
reduction formulae for integrals of the form∫
xnexdx- Use a reduction formula to determine∫
x^4 exdx.
[ex(x^4 − 4 x^3 + 12 x^2 − 24 x+ 24 )+c] - Determine
∫
t^3 e^2 tdt using a reduction for-
mula.
[
e^2 t( 1
2 t(^3) − 3
4 t
(^2) + 3
4 t−
3
8
)
+c
]
- Use the result of Problem 2 to evaluate∫
1
05 t
(^3) e 2 tdt,correct to 3 decimal places.
[6.493]
44.3 Using reduction formulae for
integrals of the form
∫
xncosxdx
and
∫
xnsinxdx
(a)
∫
xncosxdxLetIn=
∫
xncosxdxthen, using integration by parts:if u=xnthen
du
dx=nxn−^1and if dv=cosxdxthen
v=∫
cosxdx=sinxHence In=xnsinx−∫
(sinx)nxn−^1 dx=xnsinx−n∫
xn−^1 sinxdxUsing integration by parts again, this time with
u=xn−^1 :
du
dx=(n− 1 )xn−^2 ,anddv=sinxdx,from which,v=∫
sinxdx=−cosxHence In=xnsinx−n[
xn−^1 (−cosx)−∫
(−cosx)(n− 1 )xn−^2 dx]=xnsinx+nxn−^1 cosx−n(n− 1 )∫
xn−^2 cosxdxi.e.In=xnsinx+nxn−^1 cosx
−n(n−1)In− 2(2)Problem 3.∫ Use a reduction formula to determine
x^2 cosxdx.Using the reduction formula of equation (2):
∫
x^2 cosxdx=I 2=x^2 sinx+ 2 x^1 cosx− 2 ( 1 )I 0and I 0 =∫
x^0 cosxdx=∫
cosxdx=sinxHence
∫
x^2 cosxdx=x^2 sinx+ 2 xcosx−2sinx+cProblem 4. Evaluate∫ 2
14 t(^3) costdt, correct to 4
significant figures.
Let us firstly find a reduction formula for∫
t^3 costdt.