Reduction formulae 429
Problem 6.∫ Use a reduction formula to determine
x^3 sinxdx.Using equation (3),
∫
x^3 sinxdx=I 3
=−x^3 cosx+ 3 x^2 sinx− 3 ( 2 )I 1and I 1 =−x^1 cosx+ 1 x^0 sinx
=−xcosx+sinxHence
∫
x^3 sinxdx=−x^3 cosx+ 3 x^2 sinx
−6[−xcosx+sinx]
=−x^3 cosx+ 3 x^2 sinx
+ 6 xcosx−6sinx+cProblem 7. Evaluate∫ π
2
03 θ^4 sinθdθ, correct to 2
decimal places.From equation (3),
In=[−xncosx+nxn−^1 (sinx)]π
2
0 −n(n−^1 )In−^2=[(
−(π
2)n
cosπ
2+n(π
2)n− 1
sinπ
2)
−( 0 )]−n(n− 1 )In− 2=n(π
2)n− 1
−n(n− 1 )In− 2Hence
∫ π
2
03 θ^4 sinθdθ= 3∫ π
2
0θ^4 sinθdθ= 3 I 4= 3[
4(π
2) 3
− 4 ( 3 )I 2]I 2 = 2(π
2) 1
− 2 ( 1 )I 0 andI 0 =∫ π
2
0θ^0 sinθdθ=[−cosx]π
2
0=[− 0 −(− 1 )]= 1Hence3∫π 20θ^4 sinθdθ= 3 I 4= 3[
4(π
2) 3
− 4 ( 3 ){
2(π
2) 1
− 2 ( 1 )I 0}]= 3[
4(π
2) 3
− 4 ( 3 ){
2(π
2) 1
− 2 ( 1 )( 1 )}]= 3[
4(π
2) 3
− 24(π
2) 1
+ 24]= 3 ( 15. 503 − 37. 699 + 24 )= 3 ( 1. 8039 )= 5. 41Now try the following exerciseExercise 170 Further problems on
reduction formulae for integrals of the form∫
xncosxdxand∫
xnsinxdx- Use a reduction formula to determine∫
x^5 cosx⎡dx.
⎢
⎣x^5 sinx+ 5 x^4 cosx− 20 x^3 sinx
− 60 x^2 cosx+ 120 xsinx
+120cosx+c⎤
⎥
⎦- Evaluate
∫π
0 x(^5) cosxdx, correct to 2 decimal
places. [−134.87]
- Use a reduction formula to determine∫
x^5 sin⎡xdx.
⎢
⎣−x^5 cosx+ 5 x^4 sinx+ 20 x^3 cosx
− 60 x^2 sinx− 120 xcosx
+120sinx+c⎤
⎥
⎦- Evaluate
∫π
0 x(^5) sinxdx, correct to 2 decimal
places. [62.89]
44.4 Using reduction formulae for
integrals of the form
∫
sinnxdx
and
∫
cosnxdx
(a)∫
sinnxdx
LetIn=∫
sinnxdx≡∫
sinn−^1 xsinxdxfrom laws of
indices.
Usingintegrationbyparts,letu=sinn−^1 x,fromwhich,