Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Reduction formulae 429


Problem 6.∫ Use a reduction formula to determine
x^3 sinxdx.

Using equation (3),

x^3 sinxdx=I 3


=−x^3 cosx+ 3 x^2 sinx− 3 ( 2 )I 1

and I 1 =−x^1 cosx+ 1 x^0 sinx


=−xcosx+sinx

Hence

x^3 sinxdx=−x^3 cosx+ 3 x^2 sinx


−6[−xcosx+sinx]
=−x^3 cosx+ 3 x^2 sinx
+ 6 xcosx−6sinx+c

Problem 7. Evaluate

∫ π
2
0

3 θ^4 sinθdθ, correct to 2
decimal places.

From equation (3),


In=[−xncosx+nxn−^1 (sinx)]

π
2
0 −n(n−^1 )In−^2

=

[(


2

)n
cos

π
2

+n


2

)n− 1
sin

π
2

)
−( 0 )

]

−n(n− 1 )In− 2

=n


2

)n− 1
−n(n− 1 )In− 2

Hence


∫ π
2
0

3 θ^4 sinθdθ= 3

∫ π
2
0

θ^4 sinθdθ

= 3 I 4

= 3

[
4


2

) 3
− 4 ( 3 )I 2

]

I 2 = 2


2

) 1
− 2 ( 1 )I 0 and

I 0 =

∫ π
2
0

θ^0 sinθdθ=[−cosx]

π
2
0

=[− 0 −(− 1 )]= 1

Hence

3

∫π 2

0

θ^4 sinθdθ

= 3 I 4

= 3

[
4


2

) 3
− 4 ( 3 )

{
2


2

) 1
− 2 ( 1 )I 0

}]

= 3

[
4


2

) 3
− 4 ( 3 )

{
2


2

) 1
− 2 ( 1 )( 1 )

}]

= 3

[
4


2

) 3
− 24


2

) 1
+ 24

]

= 3 ( 15. 503 − 37. 699 + 24 )

= 3 ( 1. 8039 )= 5. 41

Now try the following exercise

Exercise 170 Further problems on
reduction formulae for integrals of the form∫
xncosxdxand


xnsinxdx


  1. Use a reduction formula to determine∫
    x^5 cosx⎡dx.




x^5 sinx+ 5 x^4 cosx− 20 x^3 sinx
− 60 x^2 cosx+ 120 xsinx
+120cosx+c





  1. Evaluate


∫π
0 x

(^5) cosxdx, correct to 2 decimal
places. [−134.87]



  1. Use a reduction formula to determine∫
    x^5 sin⎡xdx.




−x^5 cosx+ 5 x^4 sinx+ 20 x^3 cosx
− 60 x^2 sinx− 120 xcosx
+120sinx+c





  1. Evaluate


∫π
0 x

(^5) sinxdx, correct to 2 decimal
places. [62.89]


44.4 Using reduction formulae for


integrals of the form



sinnxdx


and



cosnxdx


(a)


sinnxdx
LetIn=


sinnxdx≡


sinn−^1 xsinxdxfrom laws of
indices.
Usingintegrationbyparts,letu=sinn−^1 x,fromwhich,
Free download pdf