26 Higher Engineering Mathematics
y0.51.00 1232 0.52 1.0x
x 3
0.482
0.301
00.5
2 0.300.2
2 0.700.1
y 5 log 10 x 2 1.0Figure 3.1(ii) logaa= 1
Let logaa=xthenax=afrom the definition of
a logarithm.
Ifax=athenx=1.
Hence logaa=1. (Check with a calculator that
log 1010 =1andlogee=1)y
210 123456 xx 6 5 4 3 2 1 0.5 0.2 0.1
1.79 1.61 1.39 1.10 0.69 0 2 0.69 2 1.61 2 2.302122y 5 logexFigure 3.2(iii) loga 0 →−∞
Let loga 0 =xthenax=0 from the definition of
a logarithm.
Ifax=0, and a is a positive real number,
then x must approach minus infinity. (For
example, check with a calculator, 2−^2 = 0 .25,
2 −^20 = 9. 54 × 10 −^7 ,2−^200 = 6. 22 × 10 −^61 ,and
so on)
Hence loga 0 →−∞