Numerical integration 441
With 6 intervals, each will have a width of
π
3− 06
i.e.
π
18rad (or 10◦), and the ordinates will occur at0 ,
π
18,π
9,π
6,2 π
9,5 π
18andπ
3Correspondingvalues of
√(
1 −1
3sin^2 θ)
are shown inthe table below.
θ 0π
18π
9π
6
(or 10◦)(or 20◦)(or 30◦)
√(
1 −1
3sin^2 θ)
1.0000 0.9950 0.9803 0.9574θ2 π
95 π
18π
3
(or 40◦) (or 50◦) (or 60◦)
√(
1 −1
3sin^2 θ)
0.9286 0.8969 0.8660From Equation (5)
∫ π
3
0√(
1 −1
3sin^2 θ)
dθ≈1
3(π18)
[( 1. 0000 + 0. 8660 )+ 4 ( 0. 9950+ 0. 9574 + 0. 8969 )+ 2 ( 0. 9803 + 0. 9286 )]=1
3(π
18)
[1. 8660 + 11. 3972 + 3 .8178]=0.994,correct to 3 decimal places.Problem 8. An alternating currentihas the
following values at equal intervals of
2.0milliseconds:Time (ms) Currenti(A)0 02.0 3.5
4.0 8.26.0 10.08.0 7.310.0 2.0
12.0 0Charge, q, in millicoulombs, is given by
q=∫ 12. 0
0 idt.
Use Simpson’s rule to determine the approximate
charge in the 12millisecond period.From equation (5):Charge,q=∫ 12. 00idt≈1
3( 2. 0 )[( 0 + 0 )+ 4 ( 3. 5+ 10. 0 + 2. 0 )+ 2 ( 8. 2 + 7. 3 )]=62mCNow try the following exerciseExercise 175 Further problemson
Simpson’s rule
In Problems 1 to 5, evaluate the definite integrals
usingSimpson’s rule, giving the answers correct
to 3 decimal places.1.∫ π
2
0√
(sinx)dx (Use 6 intervals) [1.187]2.∫ 1. 601
1 +θ^4dθ (Use 8 intervals) [1.034]3.∫ 1. 00. 2sinθ
θdθ (Use 8 intervals) [0.747]4.∫ π
2
0xcosxdx (Use 6 intervals) [0.571]5.∫ π
3
0ex
2
sin2xdx (Use 10 intervals)
[1.260]
In Problems 6 and 7 evaluate the definite inte-
grals using (a) integration, (b) the trapezoidal rule,