446 Higher Engineering Mathematics
Integrating both sides gives:y=∫ (
2
x− 4 x^2)
dxi.e. y=2lnx−4
3x^3 +c,
which is the general solution.Problem 3. Find the particular solution of thedifferential equation 5dy
dx+ 2 x=3, given theboundary conditionsy= 12
5whenx= 2.Since 5dy
dx+ 2 x=3thendy
dx=3 − 2 x
5=3
5−2 x
5Hence y=∫(
3
5−2 x
5)
dxi.e. y=3 x
5−x^2
5+c,which is the general solution.
Substituting the boundary conditionsy= 125 andx= 2
to evaluatecgives:
125 =^65 −^45 +c,from which,c= 1Hence the particular solution isy=3 x
5−x^2
5+ 1.Problem 4. Solve the equation
2 t(
t−dθ
dt)
=5, givenθ=2whent= 1.Rearranging gives:t−dθ
dt=5
2 tanddθ
dt=t−5
2 t
Integrating gives:θ=∫ (
t−5
2 t)
dti.e. θ=
t^2
2−
5
2lnt+c,which is the general solution.
Whenθ=2,t=1, thus 2=^12 −^52 ln 1+cfrom which,
c=^32.
Hence the particular solution is:θ=t^2
2−5
2lnt+3
2
i.e. θ=1
2(t^2 −5lnt+3)Problem 5. The bending momentMof the beam
is given bydM
dx=−w(l−x),wherewandxare
constants. DetermineMin terms ofxgiven:
M=^12 wl^2 whenx= 0.dM
dx=−w(l−x)=−wl+wxIntegrating with respect toxgives:M=−wlx+wx^2
2+cwhich is the general solution.WhenM=^12 wl^2 ,x=0.Thus1
2wl^2 =−wl( 0 )+w( 0 )^2
2+cfrom which,c=1
2wl^2.
Hence the particular solution is:M=−wlx+w(x)^2
2+1
2wl^2i.e. M=1
2w(l^2 −2lx+x^2 )or M=1
2w(l−x)^2Now try the following exerciseExercise 177 Further problems on
equations of the formdy
dx=f(x).In Problems 1 to 5, solve the differential
equations.1.dy
dx=cos4x− 2 x[
y=sin4x
4−x^2 +c]- 2x
dy
dx= 3 −x^3[
y=3
2lnx−x^3
6+c]3.dy
dx+x=3, giveny=2whenx=1.
[
y= 3 x−x^2
2−1
2]- 3
dy
dθ+sinθ=0, giveny=2
3whenθ=π
3
[
y=1
3cosθ+1
2]