468 Higher Engineering Mathematics
yC 1 =y 0 +^12 h[(y′) 0 +f(x 1 ,yP 1 )]= 2. 89090205 +^12 ( 0. 1 )[2. 49090205+( 3. 139992255 − 0. 5 )]=3.147446765Problem 4 is the same example as Problem 3 and
Table 49.9 shows a comparison of the results, i.e. it
compares the results of Tables 49.3 and 49.8.
dy
dx=y−x may be solved analytically by the inte-
grating factor method of Chapter 48 with the solution
y=x+ 1 +ex. Substitutingvalues ofxof 0, 0.1, 0. 2 ,...
give the exact values shown in Table 49.9.
The percentage error for each method for each value of
xis shown in Table 49.10. For example whenx= 0 .3,
% error with Euler method=(
actual−estimated
actual)
×100%=(
2. 649858808 − 2. 631
2. 649858808)
×100%=0.712%% error with Euler-Cauchy method=(
2. 649858808 − 2. 649232625
2. 649858808)
×100%=0.0236%This calculation and the others listed in Table 49.10
show the Euler-Cauchy method to be more accurate than
the Euler method.Table 49.10
x Error in Error in
Euler method Euler-Cauchy method0 0 00.1 0.234% 0.00775%
0.2 0.472% 0.0156%0.3 0.712% 0.0236%0.4 0.959% 0.0319%0.5 1.214% 0.0405%Problem 5. Obtain a numerical solution of the
differential equation
dy
dx= 3 ( 1 +x)−yin the range 1.0(0.2)2.0, using the Euler-Cauchy
method, given the initial conditions thatx=1when
y=4.This is the same as Problem 1 on page 462, and a
comparison of values may be made.dy
dx=y′= 3 ( 1 +x)−y i.e.y′= 3 + 3 x−yx 0 = 1. 0 ,y 0 =4andh= 0. 2(y′) 0 = 3 + 3 x 0 −y 0 = 3 + 3 ( 1. 0 )− 4 = 2x 1 = 1 .2 and from equation (3),Table 49.9
Euler method Euler-Cauchy method Exact value
xy y y=x+ 1 +ex- 0 2 2 2
- 0.1 2.2 2.205 2.205170918
- 0.2 2.41 2.421025 2.421402758
- 0.3 2.631 2.649232625 2.649858808
- 0.4 2.8641 2.89090205 2.891824698
- 0.5 3.11051 3.147446765 3.148721271