470 Higher Engineering Mathematics
From Table 49.11 of Problem 5, by the Euler-Cauchy
method, whenx= 1 .6,y= 5. 351368
% error in the Euler-Cauchy method=(
5. 348811636 − 5. 351368
5. 348811636)
×100%=−0.048%The Euler-Cauchy method is seen to be more accurate
than the Euler method whenx= 1 .6.Now try the following exerciseExercise 185 Further problems on an
improved Euler method- Apply the Euler-Cauchy method to solve the
differential equation
dy
dx
= 3 −y
x
for the range 1.0(0.1)1.5, given the initial
conditions thatx=1wheny= 2.
[see Table 49.12]
Table 49.12
x y y′
1.0 2 11.1 2.10454546 1.086776861.2 2.216666672 1.152777773
1.3 2.33461539 1.2041420081.4 2.457142859 1.24489879581.5 2.583333335- Solving the differential equation in Prob-
lem 1 by the integrating factor method gives
y=
3
2
x+1
2 x. Determine the percentage error,
correct to 3 significant figures, whenx= 1. 3
using (a) Euler’s method (see Table 49.4,
page 465), and (b) the Euler-Cauchy method.
[(a) 0.412% (b) 0.000000214%]3.(a) Apply the Euler-Cauchy method to solve
the differential equation
dy
dx−x=yfor the rangex=0tox= 0 .5inincre-
ments of 0.1, given the initial conditions
that whenx=0,y= 1(b) The solution of the differential equation
in part (a) is given by y=2ex−x−1.
Determine the percentage error, correct to
3 decimal places, whenx= 0. 4[(a) see Table 49.13 (b) 0.117%]Table 49.13
x y y′
0 1 10.1 1.11 1.210.2 1.24205 1.44205
0.3 1.398465 1.6984650.4 1.581804 1.9818040.5 1.794893- Obtain a numerical solution of the differential
equation
1
xdy
dx+ 2 y= 1using the Euler-Cauchy method in the range
x= 0 ( 0. 2 ) 1 .0, given the initial conditions that
x=0wheny= 1.[see Table 49.14]Table 49.14
x y y′0 1 00.2 0.99 −0.1960.4 0.958336 −0.3666688
0.6 0.875468851 −0.4505626230.8 0.784755575 −0.455608921.0 0.700467925