Second order differential equations of the forma
d^2 ydx^2 +b
dy
dx+cy=f(x)^485(ii) Substitutingmfor D gives the auxiliary equa-
tionm^2 +m− 2 =0. Factorizing gives:(m− 1 )
(m+ 2 )=0, from whichm=1orm=−2.
(iii) Since the roots are real and different, the C.F.,
u=Aex+Be−^2 x.(iv) Since the term on the right hand side of the
given equation is a constant, i.e. f(x)=4, let
the P.I. also be a constant, say v=k (see
Table 51.1(a)).
(v) Substituting v=k into (D^2 +D− 2 )v= 4
gives (D^2 +D− 2 )k=4. Since D(k)=0and
D^2 (k)=0then− 2 k=4, from which,k=−2.
Hence the P.I.,v=− 2.
(vi) The general solution is given byy=u+v,i.e.
y=Aex+Be−^2 x− 2.Problem 2. Determine the particular solution of
the equation
d^2 y
dx^2− 3
dy
dx=9, given the boundaryconditions that whenx=0,y=0anddy
dx=0.Using the procedure of Section 51.2:
(i)d^2 y
dx^2− 3dy
dx=9 in D-operator form is
(D^2 −3D)y=9.
(ii) Substitutingmfor D gives the auxiliary equation
m^2 − 3 m=0. Factorizing gives:m(m− 3 )=0,
from which,m=0orm=3.
(iii) Since the roots are real and different, the C.F.,
u=Ae^0 +Be^3 x,i.e.u=A+Be^3 x.
(iv) Since the C.F. contains a constant (i.e.A)thenlet
the P.I.,v=kx(see Table 51.1(a)).
(v) Substitutingv=kxinto(D^2 −3D)v=9gives
(D^2 −3D)kx=9.
D(kx)=kand D^2 (kx)=0.
Hence (D^2 −3D)kx= 0 − 3 k=9, from which,
k=−3.
Hence the P.I.,v=− 3 x.
(vi) The general solution is given byy=u+v,i.e.
y=A+Be^3 x− 3 x.(vii) When x=0, y=0, thus 0=A+Be^0 −0, i.e.
0 =A+B (1)
dy
dx
= 3 Be^3 x−3;dy
dx=0whenx=0, thus
0 = 3 Be^0 −3 from which, B=1. From equa-
tion (1),A=−1.Hence the particular solution is
y=− 1 +1e^3 x− 3 x,
i.e. y=e^3 x− 3 x− 1Problem 3. Solve the differential equation2d^2 y
dx^2− 11dy
dx+ 12 y= 3 x−2.Using the procedure of Section 51.2:(i) 2d^2 y
dx^2− 11dy
dx+ 12 y= 3 x−2 in D-operator
form is(2D^2 −11D+ 12 )y= 3 x− 2.(ii) Substituting m for D gives the auxiliary
equation 2m^2 − 11 m+ 12 =0. Factorizing gives:
( 2 m− 3 )(m− 4 )=0, from which, m=^32 or
m=4.
(iii) Since the roots are real and different, the C.F.,
u=Ae3
2 x+Be^4 x(iv) Sincef(x)= 3 x−2 is a polynomial, let the P.I.,
v=ax+b(see Table 51.1(b)).
(v) Substitutingv=ax+binto
(2D^2 −11D+ 12 )v= 3 x−2gives:(2D^2 −11D+ 12 )(ax+b)= 3 x− 2 ,
i.e. 2D^2 (ax+b)−11D(ax+b)
+ 12 (ax+b)= 3 x− 2
i.e. 0 − 11 a+ 12 ax+ 12 b= 3 x− 2Equating the coefficients ofx gives: 12a=3,
from which,a=^14.
Equating the constant terms gives:
− 11 a+ 12 b=−2.
i.e.− 11( 1
4)
+ 12 b=−2 from which,12 b=− 2 +11
4=3
4i.e.b=1
16Hence the P.I.,v=ax+b=1
4x+1
16
(vi) The general solution is given byy=u+v,i.e.y=Ae3
2 x+Be^4 x+
1
4x+1
16