Second order differential equations of the forma
d^2 ydx^2 +b
dy
dx+cy=f(x)^487−^23 =( 0 +B)e^0 +^13 e^0 , from which,B=−1.
dy
dx=(Ax+B)ex+ex(A)+^43 e^4 x.Whenx=0,dy
dx= 41
3, thus13
3=B+A+4
3
from which,A=4, sinceB=−1.
Hence the particular solution is:y=( 4 x− 1 )ex+^13 e^4 xProblem 5. Solve the differential equation2d^2 y
dx^2−dy
dx− 3 y=5e3
2 x.Using the procedure of Section 51.2:
(i) 2d^2 y
dx^2−dy
dx− 3 y=5e3
2 x in D-operator form is(2D^2 −D− 3 )y=5e3
2 x.(ii) Substituting m for D gives the auxiliary
equation 2m^2 −m− 3 =0. Factorizing gives:
( 2 m− 3 )(m+ 1 )=0, from which, m=^32 or
m=−1. Since the roots are real and different then
the C.F.,u=Ae3
2 x+Be−x.(iii) Since e3
2 x appears in the C.F. and in the
right hand side of the differential equation, let the
P.I.,v=kxe3
2 x(see Table 51.1(c), snag case (i)).(iv) Substitutingv=kxe3
2 x into(2D^2 −D− 3 )v=
5e3
2 xgives:(2D^2 −D− 3 )kxe3
2 x=5e3
2 x.D(
kxe3
2 x)
=(kx)(
3
2 e3
2 x)
+(
e3
2 x)
(k),by the product rule,=ke3
2 x( 3
2 x+^1)D^2(
kxe3
2 x)
=D[
ke3
2 x( 3
2 x+^1)
]=(
ke3
2 x)
( 3
2)+( 3
2 x+^1)
(
3
2 ke3
2 x)=ke3
2 x( 9
4 x+^3)Hence(2D^2 −D− 3 )(
kxe3
2 x)= 2[
ke3
2 x( 9
4 x+^3)
]
−[
ke3
2 x( 3
2 x+^1)
]− 3[
kxe3
2 x]
=5e3
2 xi.e.^92 kxe3
2 x+ 6 ke3
2 x−^32 xke3
2 x−ke3
2 x− 3 kxe3
2 x=5e3
2 xEquating coefficients of e3
2 xgives: 5k=5, from
which,k=1.
Hence the P.I.,v=kxe3
2 x=xe3
2 x.(v) The general solution is y=u+v,i.e.
y=Ae3
2 x+Be−x+xe3
2 x.Problem 6. Solved^2 y
dx^2− 4dy
dx+ 4 y=3e^2 x.Using the procedure of Section 51.2:(i)d^2 y
dx^2− 4dy
dx+ 4 y=3e^2 x in D-operator form is
(D^2 −4D+ 4 )y=3e^2 x.
(ii) Substituting m for D gives the auxiliary
equation m^2 − 4 m+ 4 =0. Factorizing gives:
(m− 2 )(m− 2 )=0, from which,m=2 twice.
(iii) Since the roots are real and equal, the C.F.,
u=(Ax+B)e^2 x.
(iv) Since e^2 xandxe^2 xboth appear in the C.F. let the
P.I.,v=kx^2 e^2 x(see Table 51.1(c), snag case (ii)).
(v) Substitutingv=kx^2 e^2 x into(D^2 −4D+ 4 )v=
3e^2 xgives:(D^2 −4D+ 4 )(kx^2 e^2 x)=3e^2 xD(kx^2 e^2 x)=(kx^2 )(2e^2 x)+(e^2 x)( 2 kx)= 2 ke^2 x(x^2 +x)D^2 (kx^2 e^2 x)=D[2ke^2 x(x^2 +x)]=( 2 ke^2 x)( 2 x+ 1 )+(x^2 +x)( 4 ke^2 x)= 2 ke^2 x( 4 x+ 1 + 2 x^2 )Hence(D^2 −4D+ 4 )(kx^2 e^2 x)=[2ke^2 x( 4 x+ 1 + 2 x^2 )]−4[2ke^2 x(x^2 +x)]+4[kx^2 e^2 x]=3e^2 x