Second order differential equations of the forma
d^2 ydx^2 +b
dy
dx+cy=f(x)^489Equating coefficients of cos2xgives:
6 A− 13 B=0(2)
6 ×( 1 )gives :− 78 A− 36 B=36 (3)
13 ×( 2 )gives : 78A− 169 B=0(4)
( 3 )+( 4 )gives : − 205 B= 36from which, B=− 36
205SubstitutingB=− 36
205into equation (1) or (2)givesA=− 78
205
Hence the P.I.,v=− 78
205
sin2x−36
205
cos2x.(vi) The general solution,y=u+v,i.e.y=Aex+Be−5
2 x−2
205(39 sin 2x+18 cos 2x)Problem 8. Solved^2 y
dx^2+ 16 y=10cos4xgiveny=3anddy
dx=4whenx=0.Using the procedure of Section 51.2:
(i)
d^2 y
dx^2+ 16 y=10cos4xin D-operator form is(D^2 + 16 )y=10cos4x(ii) The auxiliary equation is m^2 + 16 =0, from
whichm=√
− 16 =±j4.(iii) Since the roots are complex the C.F.,
u=e^0 (Acos 4x+Bsin4x)i.e.u=Acos4x+Bsin4x(iv) Since sin4x occurs in the C.F. and in the
right hand side of the given differential equa-
tion, let the P.I.,v=x(Csin4x+Dcos 4x)(see
Table 51.1(d), snag case—constantsCandDare
used sinceAandBhave already been used in the
C.F.).(v) Substituting v=x(Csin4x+Dcos 4x) into
(D^2 + 16 )v=10cos4xgives:(D^2 + 16 )[x(Csin4x+Dcos4x)]
=10cos4xD[x(Csin4x+Dcos 4x)]=x( 4 Ccos4x− 4 Dsin4x)+(Csin4x+Dcos 4x)( 1 ),by the product ruleD^2 [x(Csin4x+Dcos4x)]=x(− 16 Csin4x− 16 Dcos4x)
+( 4 Ccos4x− 4 Dsin 4x)+( 4 Ccos4x− 4 Dsin 4x)Hence(D^2 + 16 )[x(Csin4x+Dcos4x)]=− 16 Cxsin4x− 16 Dxcos4x+ 4 Ccos4x− 4 Dsin4x+ 4 Ccos4x− 4 Dsin4x+ 16 Cxsin4x+ 16 Dxcos4x=10cos4x,i.e.− 8 Dsin4x+ 8 Ccos4x=10cos4xEquating coefficients of cos4xgives:
8 C=10, from which,C=
10
8=
5
4
Equating coefficients of sin4xgives:
− 8 D=0, from which,D=0.
Hence the P.I.,v=x(
5
4 sin 4x)
.(vi) The general solution,y=u+v,i.e.y=Acos 4x+Bsin 4x+^54 xsin 4x(vii) Whenx=0,y=3, thus
3 =Acos 0+Bsin0+0, i.e.A=3.
dy
dx=− 4 Asin 4x+ 4 Bcos4x+^54 x(4cos4x)+^54 sin4xWhenx=0,dy
dx=4, thus4 =− 4 Asin 0+ 4 Bcos0+ 0 +^54 sin0i.e. 4= 4 B, from which,B= 1
Hence the particular solution isy=3cos4x+sin 4x+^54 xsin 4x