Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

492 Higher Engineering Mathematics


Equating coefficients of exsin2xgives:
− 3 C− 4 D− 2 C+ 4 D+ 2 C= 0
i.e.− 3 C=0, from which,C=0.
Equating coefficients of excos2xgives:
4 C− 3 D− 4 C− 2 D+ 2 D= 3
i.e.− 3 D=3, from which,D=−1.
Hence the P.I.,υ=ex(−cos2x).
(vi) The general solution,y=u+v,i.e.
y=ex(Acosx+Bsinx)−excos2x
(vii) Whenx=0,y=2 thus
2 =e^0 (Acos 0+Bsin0)
−e^0 cos0
i.e. 2 =A− 1 ,from which,A= 3
dy
dx

=ex(−Asinx+Bcosx)
+ex(Acosx+Bsinx)
−[ex(−2sin2x)+excos2x]

When x= 0 ,

dy
dx

= 3
thus 3 =e^0 (−Asin 0+Bcos0)
+e^0 (Acos 0+Bsin0)
−e^0 (−2sin0)−e^0 cos0
i.e. 3 =B+A− 1 ,from which,
B= 1 ,since A= 3
Hence the particular solution is
y=ex(3 cosx+sinx)−excos2x

Now try the following exercise

Exercise 192 Further problems on second
order differential equations of the form

a

d^2 y
dx^2

+b

dy
dx

+cy=f(x)wheref(x)is a sum or
product
In Problems 1 to 4, find the general solutionsof the
given differential equations.


  1. 8


d^2 y
dx^2

− 6

dy
dx

+y= 2 x+40sinx


y=Ae

x

(^4) +Be
x
(^2) + 2 x+ 12



  • 8
    17
    (6cosx−7sinx)




  1. d^2 y
    dθ^2
    − 3
    dy



  • 2 y=2sin2θ−4cos2θ
    [
    y=Ae^2 θ+Beθ+^12 (sin2θ+cos2θ)
    ]



  1. d^2 y
    dx^2



  • dy
    dx
    − 2 y=x^2 +e^2 x
    [
    y=Aex+Be−^2 x−^34
    −^12 x−^12 x^2 +^14 e^2 x
    ]



  1. d^2 y
    dt^2
    − 2
    dy
    dt



  • 2 y=etsint
    [
    y=et(Acost+Bsint)− 2 tetcost
    ]
    In Problems 5 to 6 find the particular solutions of
    the given differential equations.



  1. d^2 y
    dx^2
    − 7
    dy
    dx



  • 10 y=e^2 x+20; when x=0,
    y=0and
    dy
    dx
    =−
    1
    3
    [
    y=
    4
    3
    e^5 x−
    10
    3
    e^2 x−
    1
    3
    xe^2 x+ 2
    ]



  1. 2


d^2 y
dx^2


dy
dx

− 6 y=6excosx;whenx=0,

y=−

21
29

and

dy
dx

=− 6

20
29


y=2e−

(^32) x
−2e^2 x



  • 3ex
    29
    (3sinx−7cosx)


Free download pdf