494 Higher Engineering Mathematics
In general, y(n)=ansin(
ax+nπ
2)
(2)For example, ify=sin 3x,thend^5 y
dx^5=y(^5 )= 35 sin(
3 x+5 π
2)
= 35 sin(
3 x+π
2)=243cos3x(iii) Ify=cosax,y′=−asinax=acos(
ax+π
2)y′′=−a^2 cosax=a^2 cos(
ax+2 π
2)y′′′=a^3 sinax=a^3 cos(
ax+3 π
2)
andsoon.In general, y(n)=ancos(
ax+nπ
2)
(3)For example, if y=4cos2x,thend^6 y
dx^6=y(^6 )= 4 ( 26 )cos(
2 x+6 π
2)= 4 ( 26 )cos( 2 x+ 3 π)
= 4 ( 26 )cos( 2 x+π)
=−256cos2x(iv) Ify=xa,y′=axa−^1 ,y′′=a(a− 1 )xa−^2 ,
y′′′=a(a− 1 )(a− 2 )xa−^3 ,
andy(n)=a(a− 1 )(a− 2 ).....(a−n+ 1 )xa−nory(n)=
a!
(a−n)!xa−n (4)whereais a positive integer.For example, ify= 2 x^6 ,thend^4 y
dx^4=y(^4 )=( 2 )6!
( 6 − 4 )!x^6 −^4=( 2 )6 × 5 × 4 × 3 × 2 × 1
2 × 1x^2= 720 x^2
(v) Ify=sinhax, y′=acoshax
y′′=a^2 sinhax
y′′′=a^3 coshax,and so onSince sinhaxis not periodic (see graph on page
43), it is more difficult to find a general state-
ment fory(n). However, this is achieved with the
following general series:y(n)=an
2{[1+(−1)n]sinhax+[1−(−1)n]coshax} (5)For example, ify=sinh2x,thend^5 y
dx^5=y(^5 )=25
2{[1+(− 1 )^5 ]sinh2x+[1−(− 1 )^5 ]cosh2x}=
25
2{[0]sinh2x+[2]cosh2x}=32cosh2x(vi) Ify=coshax,y′=asinhax
y′′=a^2 coshax
y′′′=a^3 sinhax,andsoonSince coshaxis not periodic (see graph on page
43), again it is more difficult to find a general
statement fory(n). However, this is achieved with
the following general series:y(n)=an
2{[1−(−1)n]sinhax+[1+(−1)n]coshax} (6)For example, ify=1
9cosh 3x,then
d^7 y
dx^7=y(^7 )=(
1
9)
37
2(2sinh3x)=243sinh 3x(vii) Ify=lnax,y′=1
x,y′′=−1
x^2,y′′′=2
x^3,andso
on.In general, y(n)=(−1)n−^1(n−1)!
xn(7)For example, ify=ln 5x,then
d^6 y
dx^6=y(^6 )=(− 1 )^6 −^1(
5!
x^6)
=−120
x^6