496 Higher Engineering Mathematics
Thus, wheny=x^2 e^3 x,v=x^2 , since its third derivative
is zero, andu=e^3 xsince thenth derivative is known
from equation (1), i.e. 3neax
Using Leinbiz’s theorem (equation (13),y(n)=u(n)v+nu(n−^1 )v(^1 )+n(n− 1 )
2!u(n−^2 )v(^2 )+n(n− 1 )(n− 2 )
3!u(n−^3 )v(^3 )+ ···where in this casev=x^2 , v(^1 )= 2 x, v(^2 )=2and
v(^3 )= 0
Hence, y(n)=( 3 ne^3 x)(x^2 )+n( 3 n−^1 e^3 x)( 2 x)+n(n− 1 )
2!( 3 n−^2 e^3 x)( 2 )+n(n− 1 )(n− 2 )
3!( 3 n−^3 e^3 x)( 0 )= 3 n−^2 e^3 x( 32 x^2 +n( 3 )( 2 x)
+n(n− 1 )+ 0 )
i.e. y(n)=e^3 x 3 n−^2 (9x^2 + 6 nx+n(n−1))Problem 2. Ifx^2 y′′+ 2 xy′+y=0 show that:
xy(n+^2 )+ 2 (n+ 1 )xy(n+^1 )+(n^2 +n+ 1 )y(n)= 0Differentiating each term of x^2 y′′+ 2 xy′+y= 0
ntimes, using Leibniz’s theorem of equation (13),
gives:{
y(n+^2 )x^2 +ny(n+^1 )( 2 x)+n(n− 1 )
2!y(n)( 2 )+ 0}+{y(n+^1 )( 2 x)+ny(n)( 2 )+ 0 }+{y(n)}= 0i.e. x^2 y(n+^2 )+ 2 nxy(n+^1 )+n(n− 1 )y(n)+ 2 xy(n+^1 )+ 2 ny(n)+y(n)= 0i.e. x^2 y(n+^2 )+ 2 (n+ 1 )xy(n+^1 )+(n^2 −n+ 2 n+ 1 )y(n)= 0or x^2 y(n+2)+ 2 (n+ 1 )xy(n+1)+(n^2 +n+1)y(n)= 0Problem 3. Differentiate the following
differential equationntimes:
( 1 +x^2 )y′′+ 2 xy′− 3 y=0.By Leibniz’s equation, equation (13),
{
y(n+^2 )( 1 +x^2 )+ny(n+^1 )( 2 x)+n(n− 1 )
2!y(n)( 2 )+ 0}+ 2 {y(n+^1 )(x)+ny(n)( 1 )+ 0 }− 3 {y(n)}= 0i.e.( 1 +x^2 )y(n+^2 )+ 2 nxy(n+^1 )+n(n− 1 )y(n)+ 2 xy(n+^1 )+ 2 ny(n)− 3 y(n)= 0or ( 1 +x^2 )y(n+^2 )+ 2 (n+ 1 )xy(n+^1 )+(n^2 −n+ 2 n− 3 )y(n)= 0i.e.( 1 +x^2 )y(n+2)+2(n+1)xy(n+1)+(n^2 +n−3)y(n)= 0Problem 4. Find the 5th derivative ofy=x^4 sinx.If y=x^4 sinx, then using Leibniz’s equation with
u=sinxandv=x^4 gives:y(n)=[
sin(
x+nπ
2)
x^4]+n[
sin(
x+(n− 1 )π
2)
4 x^3]+n(n− 1 )
2![
sin(
x+(n− 2 )π
2)
12 x^2]+n(n− 1 )(n− 2 )
3![
sin(
x+(n− 3 )π
2)
24 x]+n(n− 1 )(n− 2 )(n− 3 )
4![
sin(
x+(n− 4 )π
2)
24]andy(^5 )=x^4 sin(
x+5 π
2)
+ 20 x^3 sin(x+ 2 π)+( 5 )( 4 )
2( 12 x^2 )sin(
x+3 π
2)+( 5 )( 4 )( 3 )
( 3 )( 2 )( 24 x)sin(x+π)+( 5 )( 4 )( 3 )( 2 )
( 4 )( 3 )( 2 )( 24 )sin(
x+π
2)Since sin(
x+5 π
2)
≡sin(
x+π
2)
≡cosx,