Power series methods of solving ordinary differential equations 499
equation (13), each term is differentiated n times,
which gives:y(n+^2 )+y(n+^1 )+y(n)(x)+ny(n−^1 )( 1 )+ 0 = 0
i.e. y(n+^2 )+y(n+^1 )+xy(n)+ny(n−^1 )= 0
(15)(ii) Atx=0, equation (15) becomes:y(n+^2 )+y(n+^1 )+ny(n−^1 )= 0from which, y(n+^2 )=−{y(n+^1 )+ny(n−^1 )}
This is therecurrence relationand applies for
n≥ 1(iii) Substitutingn= 1 , 2 , 3 ,...will produce a set of
relationships between the various coefficients.
For n=1, (y′′′) 0 =−{(y′′) 0 +(y) 0 }
n=2, (y(^4 )) 0 =−{(y′′′) 0 + 2 (y′) 0 }
n=3, (y(^5 )) 0 =−{(y(^4 )) 0 + 3 (y′′) 0 }
n=4, (y(^6 )) 0 =−{(y(^5 )) 0 + 4 (y′′′) 0 }
n=5, (y(^7 )) 0 =−{(y(^6 )) 0 + 5 (y(^4 )) 0 }
n=6, (y(^8 )) 0 =−{(y(^7 )) 0 + 6 (y(^5 )) 0 }
From the given boundary conditions, atx=0,
y=0, thus(y) 0 =0, and atx=0,
dy
dx=1, thus
(y′) 0 = 1
From the given differential equation,
y′′+y′+xy=0, and, atx=0,
(y′′) 0 +(y′) 0 +( 0 )y=0 from which,
(y′′) 0 =−(y′) 0 =− 1
Thus,(y) 0 = 0 ,(y′) 0 = 1 ,(y′′) 0 =− 1 ,(y′′′) 0 =−{(y′′) 0 +(y) 0 }=−(− 1 + 0 )= 1(y(^4 )) 0 =−{(y′′′) 0 + 2 (y′) 0 }=−[1+ 2 ( 1 )]=− 3(y(^5 )) 0 =−{(y(^4 )) 0 + 3 (y′′) 0 }=−[− 3 + 3 (− 1 )]= 6(y(^6 )) 0 =−{(y(^5 )) 0 + 4 (y′′′) 0 }=−[6+ 4 ( 1 )]=− 10(y(^7 )) 0 =−{(y(^6 )) 0 + 5 (y(^4 )) 0 }=−[− 10 + 5 (− 3 )]= 25(y(^8 )) 0 =−{(y(^7 )) 0 + 6 (y(^5 )) 0 }=−[25+ 6 ( 6 )]=− 61(iv) Maclaurin’s theorem states:y=(y) 0 +x(y′) 0 +
x^2
2!(y′′) 0 +
x^3
3!(y′′′) 0+x^4
4!(y(^4 )) 0 + ···and substituting the above values into
Maclaurin’s theorem gives:y= 0 +x( 1 )+x^2
2!{− 1 }+x^3
3!{ 1 }+x^4
4!{− 3 }+x^5
5!{ 6 }+x^6
6!{− 10 }+x^7
7!{ 25 }+x^8
8!{− 61 }+···(v) Simplifying, the power series solution ofthe differential equation:d^2 y
dx^2+dy
dx+xy=0is
given by:y=x−x^2
2!+x^3
3!−3 x^4
4!+6 x^5
5!−10 x^6
6!+25 x^7
7!−61 x^8
8!+···Now try the following exerciseExercise 195 Further problemson power
series solutions by the Leibniz–Maclaurin
method- Determine the power series solutionof the dif-
ferential equation:d^2 y
dx^2+ 2 xdy
dx+y=0using
the Leibniz–Maclaurin method, given that at
x=0,y=1anddy
dx=2.
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
y=(
1 −x^2
2!+5 x^4
4!−5 × 9 x^6
6!+
5 × 9 × 13 x^8
8!−···)
+ 2(
x−
3 x^3
3!+3 × 7 x^5
5!−3 × 7 × 11 x^7
7!+···)⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦