502 Higher Engineering Mathematics
Thus, whenr=1,a 2 =a 1
( 2 × 8 )=a 0
( 2 × 5 × 8 )sincea 1 =a 0
5
whenr=2,a 3 =a 2
( 3 × 11 )=a 0
( 2 × 3 )( 5 × 8 × 11 )whenr=3,a 4 =a 3
( 4 × 14 )=a 0
( 2 × 3 × 4 )( 5 × 8 × 11 × 14 )
and so on.
From equation (16), the trial solution was:y=xc{a 0 +a 1 x+a 2 x^2 +a 3 x^3 +···+arxr+···}Substitutingc=2
3and the above values of a 1 , a 2 ,
a 3 , ... into the trial solution gives:y=x2
3{
a 0 +(a
0
5)
x+(
a 0
2 × 5 × 8)
x^2+(
a 0
( 2 × 3 )( 5 × 8 × 11 ))
x^3+(
a 0
( 2 × 3 × 4 )( 5 × 8 × 11 × 14 ))
x^4 +···}i.e.y=a 0 x2
3{
1 +x
5+x^2
( 2 × 5 × 8 )+x^3
( 2 × 3 )( 5 × 8 × 11 )+x^4
( 2 × 3 × 4 )( 5 × 8 × 11 × 14 )+ ···}
(22)Sincea 0 is an arbitrary (non-zero) constant ineach
solution, its value could well be different.
Leta 0 =Ainequation(21), anda 0 =Binequation(22).
Also, if the first solution is denoted byu(x)and the
second byv(x), then the general solution of the given
differential equation isy=u(x)+v(x). Hence,y=A{
1 +x+x^2
(2×4)+x^3
(2×3)(4×7)+x^4
(2× 3 ×4)(4× 7 ×10)+···}+Bx2
3{
1 +x
5+x^2
(2× 5 ×8)+x^3
(2×3)(5× 8 ×11)+x^4
(2× 3 ×4)(5× 8 × 11 ×14)+···}Problem 8. Use the Frobenius method to
determine the general power series solution of the
differential equation:2 x^2d^2 y
dx^2
−xdy
dx
+( 1 −x)y=0.The differential equation may be rewritten as:
2 x^2 y′′−xy′+( 1 −x)y=0.
(i) Let a trial solution be of the formy=xc{a 0 +a 1 x+a 2 x^2 +a 3 x^3 +···
+arxr+···} (23)
wherea 0 = 0 ,i.e. y=a 0 xc+a 1 xc+^1 +a 2 xc+^2 +a 3 xc+^3
+ ···+arxc+r+··· (24)(ii) Differentiating equation (24) gives:y′=a 0 cxc−^1 +a 1 (c+ 1 )xc+a 2 (c+ 2 )xc+^1
+ ···+ar(c+r)xc+r−^1 +···andy′′=a 0 c(c− 1 )xc−^2 +a 1 c(c+ 1 )xc−^1
+a 2 (c+ 1 )(c+ 2 )xc+···
+ar(c+r− 1 )(c+r)xc+r−^2 +···(iii) Substitutingy, y′and y′′ into each term of
the given equation 2x^2 y′′−xy′+( 1 −x)y= 0
gives:2 x^2 y′′= 2 a 0 c(c− 1 )xc+ 2 a 1 c(c+ 1 )xc+^1
+ 2 a 2 (c+ 1 )(c+ 2 )xc+^2 +···
+ 2 ar(c+r− 1 )(c+r)xc+r+···
(a)−xy′=−a 0 cxc−a 1 (c+ 1 )xc+^1
−a 2 (c+ 2 )xc+^2 −···
−ar(c+r)xc+r−··· (b)( 1 −x)y=( 1 −x)(a 0 xc+a 1 xc+^1 +a 2 xc+^2
+a 3 xc+^3 +···+arxc+r+···)
=a 0 xc+a 1 xc+^1 +a 2 xc+^2 +a 3 xc+^3
+ ···+arxc+r+···