520 Higher Engineering Mathematics
have solutions:X=Aepx+Be−pxand
T=Cecpt+De−cptwhereA,B,CandDare constants.
ButX=0atx= 0 ,hence 0=A+Bi.e.B=−Aand
X=0atx=L,hence
0 =AepL+Be−pL=A(epL−e−pL).
Assuming (epL–e−pL)is not zero, thenA=0 and since
B=−A,thenB=0also.
This corresponds to the string being stationary; since it
is non-oscillatory, this solution will be disregarded.Case 2:μ= 0
In this case, sinceμ=p^2 =0,T′′=0andX′′=0. We
will assume thatT(t)=0. SinceX′′=0,X′=aand
X=ax+bwhereaandbare constants. ButX=0at
x=0, henceb=0andX=axandX=0atx=L, hence
a=0. Thus, again, the solutionis non-oscillatoryand is
also disregarded.Case 3:μ< 0
For convenience,
letμ=−p^2 thenX′′+p^2 X=0 from which,X=Acospx+Bsinpx (1)andT′′+c^2 p^2 T=0 from which,T=Ccoscpt+Dsincpt (2)(see worked Problem 4 above).
Thus, the suggested solutionu=XTnow becomes:u={Acospx+Bsinpx}{Ccoscpt+Dsincpt}
(3)
Applying the boundary conditions:(i) u=0whenx=0 for all values oft,
thus 0={Acos 0+Bsin0}{Ccoscpt
+Dsincpt}i.e. 0 =A{Ccoscpt+Dsincpt}
from which,A= 0 ,(since{Ccoscpt
+Dsincpt} = 0 )
Hence, u={Bsinpx}{ Ccoscpt
+Dsincpt} (4)(ii) u=0whenx=Lfor all values oftHence, 0={BsinpL}{Ccoscpt+Dsincpt}NowB=0oru(x,t)would be identically zero.Thus sinpL=0i.e.pL=nπorp=nπ
Lfor inte-
ger values ofn.
Substituting in equation (4) gives:u={
Bsinnπx
L}{
Ccoscnπt
L+Dsincnπt
L}i.e. u=sinnπx
L{
Ancoscnπt
L+Bnsincnπt
L}(where constantAn=BCandBn=BD).There
will be many solutions, depending on the value of
n. Thus, more generally,un(x,t)=∑∞n= 1{
sinnπx
L(
Ancoscnπt
L+Bnsincnπt
L)}
(5)To findAnandBnwe put in the initial conditions
not yet taken into account.
(i) Att= 0 ,u(x, 0 )=f(x)for 0≤x≤L
Hence, from equation (5),u(x, 0 )=f(x)=∑∞n= 1{
Ansinnπx
L}
(6)(ii) Also att= 0 ,[
∂u
∂t]t= 0=g(x)for 0≤x≤LDifferentiatingequation(5)withrespecttotgives:∂u
∂t=∑∞n= 1{
sin
nπx
L(
An(
−
cnπ
Lsin
cnπt
L)+Bn(
cnπ
Lcoscnπt
L))}and whent= 0 ,g(x)=∑∞n= 1{
sinnπx
LBncnπ
L}i.e. g(x)=cπ
L∑∞n= 1{
Bnnsinnπx
L}
(7)From Fourier series (see page 638) it may be shown that:
Anis twice the mean value off(x)sinnπx
Lbetween
x=0andx=Li.e. An=
2
L∫L0f(x)sin
nπx
Ldxforn= 1 , 2 , 3 ,...(8)