522 Higher Engineering Mathematics
from which,
X′′−μX=0andT′′−μT= 0.- Lettingμ=−p^2 to give an oscillatory solution
gives:
X′′+p^2 X=0andT′′+p^2 T= 0The auxiliary equation foreach is:m^2 +p^2 = 0
from which,m=√
−p^2 =±jp.- Solving each equation gives:
X=Acospx+Bsinpx,and
T=Ccospt+Dsinpt.
Thus,
u(x,t)={Acospx+Bsinpx}{Ccospt+Dsinpt}. - Applying the boundary conditions to determine
constantsAandBgives:
(i) u( 0 ,t)=0,hence 0=A{Ccospt+Dsinpt}
from which we conclude thatA=0.
Therefore,
u(x,t)=Bsinpx{Ccospt+Dsinpt} (a)
(ii) u( 50 ,t)=0, hence
0 =Bsin50p{Ccospt+Dsinpt}. B=0,
hence sin50p=0 from which, 50p=nπand
p=
nπ
50- Substituting in equation (a) gives:
u(x,t)=Bsinnπx
50{
Ccosnπt
50+Dsinnπt
50}or, more generally,un(x,t)=∑∞n= 1sinnπx
50{
Ancosnπt
50+Bnsin
nπt
50}
(b)whereAn=BCandBn=BD.- From equation (8),
An=2
L∫L0f(x)sinnπx
Ldx=2
50[∫
250(
2
25x)
sinnπx
50dx+∫ 5025(
100 − 2 x
25)
sinnπx
50dx]Each integral is determined using integration by
parts (see Chapter 43, page 420) with the result:An=16
n^2 π^2sinnπ
2From equation (9),Bn=2
cnπ∫L0g(x)sinnπx
Ldx
[
∂u
∂t]t= 0= 0 =g(x)thus,Bn= 0Substituting into equation (b) gives:un(x,t)=∑∞n= 1sinnπx
50{
Ancosnπt
50+Bnsinnπt
50}=∑∞n= 1sinnπx
50{
16
n^2 π^2sinnπ
2cosnπt
50+( 0 )sinnπt
50}Hence,u(x,t)=16
π^2∑∞n= 11
n^2sinnπx
50sinnπ
2cosnπt
50For stretched stringproblems as in problem 5 above, the
main parts of the procedure are:- DetermineAnfrom equation (8).
Note that2
L∫ L0f(x)sinnπx
Ldxisalwaysequalto8 d
n^2 π^2sinnπ
2(see Fig. 53.3)- DetermineBnfrom equation (9)
- Substitute in equation (5) to determineu(x,t)
0 xy 5 f (x )LdyL
2Figure 53.3