526 Higher Engineering Mathematics
the potential at any point within the rectangleOPQR.
The boundary conditions are:u=0whenx=0i.e.u( 0 ,y)=0for0≤y≤b
u=0whenx=a i.e.u(a,y)=0for0≤y≤b
u=0wheny=b i.e.u(x,b)=0for0≤x≤a
u=f(x)wheny=0i.e.u(x, 0 )=f(x)
for 0≤x≤aAs with previous partial differential equations, a solu-
tion of the formu(x,y)=X(x)Y(y)is assumed, where
X isa function ofx only, andY is a function of
y only. Simplifying tou=XY, determining partialderivatives, and substituting into∂^2 u
∂x^2+∂^2 u
∂y^2=0gives:
X′′Y+XY′′= 0
Separating the variables gives:X′′
X=−Y′′
Y
Lettingeach side equal a constant,−p^2 ,givesthetwo
equations:X′′+p^2 X=0andY′′−p^2 Y= 0from which,X=Acospx+Bsinpxand
Y=Cepy+De−pyorY=Ccoshpy+Dsinhpy(see
Problem 5, page 480 for this conversion).
This latter form can also be expressed as:
Y=Esinhp(y+φ)by using compound angles.Hence u(x,y)=XY={Acospx+Bsinpx}{Esinhp(y+φ)}or u(x,y)={Pcospx+Qsinpx}{sinhp(y+φ)}whereP=AEandQ=BE.The first boundary condition is:u( 0 ,y)=0, hence
0 =Psinhp(y+φ) from which, P=0. Hence,
u(x,y)=Qsinpxsinhp(y+φ).
The second boundary condition is: u(a,y)=0,
hence 0=Qsinpasinhp(y+φ) from which,
sinpa=0, hence,pa=nπorp=nπ
afor
n= 1 , 2 , 3 ,...
The third boundary condition is: u(x,b)=0,
hence, 0=Qsinpxsinhp(b+φ) from which,
sinhp(b+φ)=0andφ=−b.
Hence,u(x,y)=Qsinpxsinhp(y−b)=
Q 1 sinpxsinhp(b−y)whereQ 1 =−Q.Since there are many solutions for integer values ofn,u(x,y)=∑∞n= 1Qnsinpxsinhp(b−y)=∑∞n= 1Qnsinnπx
asinhnπ
a(b−y)The fourth boundary condition is:u(x, 0 )=f(x),hence, f(x)=∑∞n= 1Qnsinnπx
asinhnπb
ai.e. f(x)=∑∞n= 1(
Qnsinhnπb
a)
sinnπx
aFrom Fourier series coefficients,
(
Qnsinhnπb
a)
= 2 ×the mean value off(x)sinnπx
afromx=0tox=ai.e. =∫a0f(x)sinnπx
adxfrom which,Qnmay be determined.
This is demonstrated in the following worked
problem.Problem 7. A square plate is bounded by the
linesx= 0 ,y= 0 ,x=1andy= 1 .Apply the
Laplace equation∂^2 u
∂x^2+∂^2 u
∂y^2=0todeterminethe
potential distributionu(x,y)over the plate, subject
to the following boundary conditions:
u=0whenx= 00 ≤y≤ 1 ,
u=0whenx= 10 ≤y≤ 1 ,
u=0wheny= 00 ≤x≤ 1 ,
u=4wheny= 10 ≤x≤1.Initially a solution of the formu(x,y)=X(x)Y(y)is
assumed, whereXis a function ofxonly, andYis a
function ofyonly. Simplifyingtou=XY, determiningpartial derivatives, and substituting into∂^2 u
∂x^2+∂^2 u
∂y^2= 0
gives: X′′Y+XY′′= 0
Separating the variables gives:X′′
X=−Y′′
Y
Lettingeach side equal a constant,−p^2 ,givesthetwo
equations:X′′+p^2 X=0andY′′−p^2 Y= 0