Inverse Laplace transforms 597
Problem 9. DetermineL−^1{
5 s^2 + 8 s− 1
(s+ 3 )(s^2 + 1 )}5 s^2 + 8 s− 1
(s+ 3 )(s^2 + 1 )≡A
s+ 3+Bs+C
(s^2 + 1 )≡A(s^2 + 1 )+(Bs+C)(s+ 3 )
(s+ 3 )(s^2 + 1 )Hence 5s^2 + 8 s− 1 ≡A(s^2 + 1 )+(Bs+C)(s+ 3 ).
Whens=− 3 , 20 = 10 A, from which,A=2.
Equatings^2 terms gives: 5=A+B, from which,B=3,
sinceA=2.
Equating s terms gives: 8= 3 B+C, from which,
C=−1, sinceB=3.
HenceL−^1
{
5 s^2 + 8 s− 1
(s+ 3 )(s^2 + 1 )}≡L−^1{
2
s+ 3+3 s− 1
s^2 + 1}≡L−^1{
2
s+ 3}
+L−^1{
3 s
s^2 + 1}−L−^1{
1
s^2 + 1}=2e−^3 t+3cost−sint,
from (iii), (v) and (iv) of Table 63.1Problem 10. FindL−^1{
7 s+ 13
s(s^2 + 4 s+ 13 )}7 s+ 13
s(s^2 + 4 s+ 13 )≡A
s+Bs+C
s^2 + 4 s+ 13≡A(s^2 + 4 s+ 13 )+(Bs+C)(s)
s(s^2 + 4 s+ 13 )Hence 7s+ 13 ≡A(s^2 + 4 s+ 13 )+(Bs+C)(s).
Whens= 0 , 13 = 13 A, from which,A=1.
Equating s^2 terms gives: 0=A+B, from which,
B=−1.Equatingsterms gives: 7= 4 A+C, from which,C=3.
HenceL−^1{
7 s+ 13
s(s^2 + 4 s+ 13 )}≡L−^1{
1
s+−s+ 3
s^2 + 4 s+ 13}≡L−^1{
1
s}
+L−^1{
−s+ 3
(s+ 2 )^2 + 32}≡L−^1{
1
s}
+L−^1{
−(s+ 2 )+ 5
(s+ 2 )^2 + 32}≡L−^1{
1
s}
−L−^1{
s+ 2
(s+ 2 )^2 + 32}+L−^1{
5
(s+ 2 )^2 + 32}≡ 1 −e−^2 tcos3t+5
3e−^2 tsin3tfrom (i), (xiii) and (xii) of Table 63.1Now try the following exerciseExercise 224 Further problemson inverse
Laplace transformsusing partial fractionsUse partial fractions to find the inverse Laplace
transforms of the following functions:1.11 − 3 s
s^2 + 2 s− 3[2et−5e−^3 t]2.
2 s^2 − 9 s− 35
(s+ 1 )(s− 2 )(s+ 3 )[4e−t−3e^2 t+e−^3 t]3.5 s^2 − 2 s− 19
(s+ 3 )(s− 1 )^2[2e−^3 t+3et−4ett]4.3 s^2 + 16 s+ 15
(s+ 3 )^3[e−^3 t( 3 − 2 t− 3 t^2 )]5.7 s^2 + 5 s+ 13
(s^2 + 2 )(s+ 1 )
[
2cos√
2 t+3
√
2sin√
2 t+5e−t]6.3 + 6 s+ 4 s^2 − 2 s^3
s^2 (s^2 + 3 )
[2+t+√
3sin√
3 t−4cos√
3 t]