614 Higher Engineering Mathematics
xf(x)
f(x)P 10(a)(b)(c)4242 2 /22 /2 xf(x) f(x)4/3 sin 3x2 2 /2 02 /2 xf(x) f(x)4/5 sin 5xP 2P 2P 1P 302 /2
2 2 /2 Figure 66.4Whenx=π
2, f(x)= 1 ,sinx=sinπ
2= 1 ,sin3x=sin3 π
2=− 1 ,sin5x=sin5 π
2= 1 ,and so on.Hence 1=4
π[
1 +1
3(− 1 )+1
5( 1 )+1
7(− 1 )+···]i.e.π
4= 1 −1
3+1
5−1
7+···Problem 4. Determine the Fourier series for
the full wave rectified sine wavei=5sinθ
2shown
in Fig. 66.5.0522 2 4 i i 5 5 sin /2Figure 66.5i=5sinθ
2is a periodic function of period 2π.
Thusi=f(θ )=a 0 +∑∞n= 1(ancosnθ+bnsinnθ)In this case it is better to take the range 0 to 2π
instead of−πto+πsince the waveform is continuous
between 0 and 2π.a 0 =1
2 π∫ 2 π0f(θ )dθ=1
2 π∫ 2 π05sinθ
2dθ=5
2 π[
−2cosθ
2] 2 π0=5
π[(
−cos2 π
2)
−(−cos0)]=5
π[( 1 )−(− 1 )]=10
πan=1
π∫ 2 π05sinθ
2cosnθdθ=
5
π∫ 2 π01
2{
sin(
θ
2+nθ)+sin(
θ
2−nθ)}
dθ(see Chapter 40,page 401)=5
2 π[
−cos[
θ( 1
2 +n)]
( 1
2 +n)−cos[
θ( 1
2 −n)]
( 1
2 −n)] 2 π0