624 Higher Engineering Mathematics
Problem 1. Determine the Fourier series for the
periodic function defined by:f(x)=⎧
⎪⎪
⎪⎪
⎪⎨⎪⎪
⎪⎪
⎪⎩− 2 , when−π<x<−π
2
2 , when−π
2<x<π
2
− 2 , whenπ
2<x<π.and has a period of 2π.The square wave shown in Fig. 68.1 is an even function
since it is symmetrical about thef(x)axis.
Hence from para. (a) the Fourier series is given by:f(x)=a 0 +∑∞n= 1ancosnx(i.e. the series contains no sine terms.)2f(x) 2 3 /2 /2 0 /2 3 /2 2 xFigure 68.1From para. (a),a 0 =1
π∫π0f(x)dx=1
π{∫π/ 202dx+∫ππ/ 2−2dx}=1
π{
[2x]π/ 02 +[− 2 x]ππ/ 2}=1
π[(π )+[(− 2 π)−(−π)]= 0an=2
π∫π0f(x)cosnxdx=2
π{∫π/ 202cosnxdx+∫ππ/ 2−2cosnxdx}=4
π{[
sinnx
n]π/ 20+[
−sinnx
n]ππ/ 2}=4
π{(
sin(π/ 2 )n
n− 0)+(
0 −−sin(π/ 2 )n
n)}=4
π(
2sin(π/ 2 )n
n)
=8
πn(
sinnπ
2)Whennis even,an= 0Whennis odd, an=8
πnforn= 1 , 5 , 9 ,...and an=− 8
πnforn= 3 , 7 , 11 ,...Hencea 1 =8
π,a 3 =− 8
3 π,a 5 =8
5 π, and so on.
Hence the Fourier series for the waveform of Fig. 68.1
is given by:f(x)=8
π(
cosx−1
3cos3x+1
5cos 5x−1
7cos 7x+···)Problem 2. In the Fourier series of Problem 1 let
x=0 and deduce a series forπ/4.Whenx=0,f(x)=2 (from Fig. 68.1).
Thus, from the Fourier series,2 =8
π(
cos0−1
3
cos0+1
5
cos0−1
7cos0+···)Hence2 π
8= 1 −1
3+1
5−1
7+···i.e.π
4= 1 −1
3+1
5−1
7+···Problem 3. Obtain the Fourier series for the
square wave shown in Fig. 68.2.