Even and odd functions and half-range Fourier series 629
Hence the half-range Fourier sine series forf(x)in the
range 0 toπis given by:
f(x)=8
3 πsin2x+16
15 πsin4x+24
35 πsin6x+···or f(x)=
8
π(
1
3sin2x+2
( 3 )( 5 )sin4x+3
( 5 )( 7 )sin6x+···)Now try the following exercise
Exercise 231 Further problems on
half-range Fourier series- Determine the half-range sine series for the
 function defined by:
f(x)=⎧
⎨
⎩x, 0 <x<π
2
0 ,π
2<x<π
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
f(x)=2
π(
sinx+π
4sin2x−1
9sin3x−π
8sin4x+···)⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦- Obtain (a) the half-range cosine series and
 (b) the half-range sine series for the function
f(t)=⎧
⎪⎨⎪⎩0 , 0 <t<π
2
1 ,π
2<t<π
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
(a) f(t)=1
2−2
π(
cost−1
3cos3t+1
5cos5t−···)⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦⎡
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣(b) f(t)=2
π(
sint−sin2t+1
3sin3t+1
5sin5t−1
3sin6t+···)⎤
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦- Find (a) the half-range Fourier sine series and
 (b) the half-range Fourier cosine series for the
 functionf(x)=sin^2 xin the range 0≤x≤π.
 Sketch the function within and outside of the
 given range.
 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
 (a) f(x)=
8
π(
sinx
( 1 )( 3 )−sin3x
( 1 )( 3 )( 5 )−sin5x
( 3 )( 5 )( 7 )−sin7x
( 5 )( 7 )( 9 )−···)(b) f(x)=1
2( 1 −cos2x)⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦- Determine the half-range Fourier cosine series
 in the rangex=0tox=πfor the function
 defined by:
f(x)=⎧
⎪⎪
⎨
⎪⎪
⎩x, 0 <x<π
2
(π−x),π
2<x<π⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
f(x)=π
4−2
π(
cos2x+cos6x
32+cos10x
52+···)⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦