Fourier series over any range 631
Period L 58 ms010v (t)(^28244812) t (ms)
Figure 69.1
The square wave is shown in Fig. 69.1. From para. (c),
the Fourier series is of the form:
v(t)=a 0 +
∑∞
n= 1
[
ancos
(
2 πnt
L
)
+bnsin
(
2 πnt
L
)]
a 0 =
1
L
∫ L
2
−L
2
v(t)dt=
1
8
∫ 4
− 4
v(t)dt
1
8
{∫ 0
− 4
0dt+
∫ 4
0
10dt
}
1
8
[10t]^40 = 5
an=
2
L
∫ L
2
−L
2
v(t)cos
(
2 πnt
L
)
dt
2
8
∫ 4
− 4
v(t)cos
(
2 πnt
8
)
dt
1
4
{∫ 0
− 4
0cos
(
πnt
4
)
dt
 - ∫ 4
 0
 10cos
 (
 πnt
 4
 )
 dt
 }
 - 1
 4
 ⎡
 ⎢
 ⎢
 ⎣
 10sin
 (
 πnt
 4
 )
 (πn
 4
 )
 ⎤
 ⎥
 ⎥
 ⎦
 4
 0
 - 10
 πn
 [sinπn−sin0]
 =0forn= 1 , 2 , 3 ,...
 bn=
 2
 L
 ∫ L 2
 −L
 2
 v(t)sin
 (
 2 πnt
 L
 )
 dt
 - 2
 8
 ∫ 4
 − 4
 v(t)sin
 (
 2 πnt
 8
 )
 dt
 - 1 
 4
 {∫ 0
 − 4
 0sin
 (
 πnt
 4
 )
 dt
 
 - ∫ 4
 0
 10sin
 (
 πnt
 4
 )
 dt
 }
 - 1
 4
 ⎡
 ⎢
 ⎢
 ⎣
 −10cos
 (
 πnt
 4
 )
 (πn
 4
 )
 ⎤
 ⎥
 ⎥
 ⎦
 4
 0
 - − 10 
 πn
 [cosπn−cos0]
 Whennis even,bn= 0
 Whennis odd,b 1 =
 − 10
 π
 (− 1 − 1 )=
 20
 π
 ,
 b 3 =
 − 10
 3 π
 (− 1 − 1 )=
 20
 3 π
 ,
 b 5 =
 20
 5 π
 ,andsoon.
 Thus the Fourier series for the functionv(t)is given by:
 v(t)= 5 +
 20
 π
 [
 sin
 (
 πt
 4
 )
 
 - 1 
 3
 sin
 (
 3 πt
 4
 )
 
 - 1 
 5
 sin
 (
 5 πt
 4
 )
 
- ···
 ]
 Problem 2. Obtain the Fourier series for the
 function defined by:
 f(x)=
 ⎧
 ⎪⎨
 ⎪⎩
 0 , when − 2 <x<− 1
 5 , when − 1 <x< 1
 0 , when 1<x< 2
 The function is periodic outside of this range of
 period 4.
 The functionf(x)is shown in Fig. 69.2 where period,
 L=4. Since the functionis symmetrical about thef(x)
 axis it is an even functionand theFourier series contains
 no sine terms (i.e.bn=0).
 L 54
 5
 f (x)
 (^2524232221012345) x
 Figure 69.2
