636 Higher Engineering Mathematics
- Determine the half-range Fourier sine series
for the function defined by:
f(t)={
t, 0 <t< 1
( 2 −t), 1 <t< 2⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
f(t)=8
π^2(
sin(
πt
2)−1
32sin(
3 πt
2)+1
52sin(
5 πt
2)
−···)⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦- Show that the half-range Fourier cosine series
for the functionf(θ )=θ^2 in the range 0 to 4
is given by:
f(θ )=16
3−64
π^2(
cos(
πθ
4)−1
22cos(
2 πθ
4)+1
32cos(
3 πθ
4)
−···)Sketch the function within and outside of the
given range.