638 Higher Engineering Mathematics
interval is thus2 π
p. Let the ordinates be labelledy 0 ,
y 1 ,y 2 ,...yp(note thaty 0 =yp). The trapezoidal rule
states:
Area=(width of interval)
[
1
2(first+last ordinate)+sum of remaining ordinates]≈2 π
p[
1
2(y 0 +yp)+y 1 +y 2 +y 3 +···]Sincey 0 =yp,then1
2(y 0 +yp)=y 0 =ypHence area≈2 π
p∑pk= 1ykMean value=
area
length of base≈1
2 π(
2 π
p)∑pk= 1yk≈1
p∑pk= 1ykHowever,a 0 =mean value off(x)intherange0 to 2π.Thus a 0 ≈1
p∑pk= 1yk (1)Similarly,an=twice the mean value off(x)cosnxin
therange0to2π,thus an≈2
p∑pk= 1ykcosnxk (2)andbn=twice the mean value of f(x)sinnxin the
range0to2π,thus bn≈2
p∑pk= 1yksinnxk (3)Problem 1. The values of the voltagevvolts at
different moments in a cycle are given by:θ◦(degrees) V(volts)
30 6260 3590 − 38
120 − 64150 − 63180 − 52θ◦(degrees) V(volts)
210 − 28240 24270 80
300 96330 90360 70Draw the graph of voltageVagainst angleθand
analyse the voltage into its first three constituent
harmonics, each coefficient correct to 2 decimal
places.8090 180y^270360
7y 1
y 2y 3 y 4 y 5 y 6y 8y 9 y 11 y 12y 10 degreesVoltage (volts)60
40
20220
240
260
2800Figure 70.2The graph of voltageV against angleθis shown in
Fig. 70.2. The range 0 to 2πis divided into 12 equal
intervals giving an interval width of2 π
12,i.e.π
6rad
or 30◦. The values of the ordinatesy 1 ,y 2 ,y 3 ,...are
62, 35, − 38 ,...from the given table of values. If
a larger number of intervals are used, results having
a greater accuracy are achieved. The data is tab-
ulated in the proforma shown in Table 70.1, on
page 639.From equation (1),a 0 ≈1
p∑p
k= 1yk=1
12( 212 )= 17. 67 (sincep= 12 )From equation (2),an≈2
p∑p
k= 1ykcosnxkhence a 1 ≈2
12( 417. 94 )= 69. 66a 2 ≈
2
12(− 39 )=− 6. 50and a 3 ≈
2
12(− 49 )=− 8. 17From equation (3),bn≈2
p∑p
k= 1yksinnxkhence b 1 ≈2
12(− 278. 53 )=− 46. 42