The complex or exponential form of a Fourier series 645
Rearranging gives:f(x)=a 0 +∑∞n= 1[(
an−jbn
2)
ej2 πLnx+(
an+jbn
2)
e−j2 πLnx]
(5)The Fourier coefficientsa 0 ,anandbnmay be replaced
by complex coefficientsc 0 ,cnandc−nsuch that
c 0 =a 0 (6)cn=an−jbn
2(7)and c−n=an+jbn
2(8)wherec−nrepresents the complex conjugate ofcn(see
page 216).
Thus, equation (5) may be rewritten as:
f(x)=c 0 +∑∞n= 1cnej2 πnx
L +∑∞n= 1c−ne−j2 πnx
L (9)Since e^0 =1, thec 0 term can be absorbed into the sum-
mation since it is just another term to be added to the
summation of thecnterm whenn=0. Thus,
f(x)=∑∞n= 0cnej2 πnx
L +∑∞n= 1c−ne−j2 πnx
L (10)Thec−nterm may be rewritten by changing the limits
n=1ton=∞ton=−1ton=−∞.Sincenhas been
made negative, the exponential term becomes ej
2 πnx
L
andc−nbecomescn. Thus,
f(x)=∑∞n= 0cnej2 πLnx
+−∞∑n=− 1cnej2 πLnxSince the summations now extend from−∞to−1and
from 0 to+∞, equation (10) may be written as:
f(x)=∑∞n=−∞cnej2 πnx
L (11)Equation (11) is thecomplexorexponential formof
the Fourier series.
71.3 The complex coefficients
From equation (7), the complex coefficientcnwas
defined as:cn=an−jbn
2
However,anandbnare defined (from page 630) by:an=2
L∫ L
2
−L 2f(x)cos(
2 πnx
L)
dx andbn=2
L∫ L 2−L 2f(x)sin(
2 πnx
L)
dxThus, cn=⎛
⎜
⎝2
L∫L 2
−L 2 f(x)cos( 2 πnx
L)
dx−j^2 L∫L 2
−L 2
f(x)sin( 2 πnx
L)
dx⎞
⎟
⎠2=1
L∫ L 2−L 2f(x)cos(
2 πnx
L)
dx−j1
L∫ L
2
−L 2f(x)sin(
2 πnx
L)
dxFrom equations (3) and (4),cn=1
L∫ L
2
−L 2f(x)(
ej2 πLnx
+e−j2 πLnx2)
dx−j1
L∫ L
2
−L 2f(x)(
ej2 πnx
L −e−j
2 πnx
L
2 j)
dxfrom which,cn=1
L∫ L
2
−L 2f(x)(
ej2 πnx
L +e−j
2 πnx
L
2)
dx−1
L∫ L
2
−L 2f(x)(
ej2 πnx
L −e−j
2 πnx
L
2)
dxi.e. cn=1
L∫ L
2
−L 2f(x)e−j2 πLnx
dx (12)Careneeds to betaken when determiningc 0 .Ifnappears
in the denominator of an expression the expansion can
beinvalidwhenn=0.In such circumstances it is usually
simpler to evaluatec 0 by using the relationship:c 0 =a 0 =1
L∫ L 2−L 2f(x)dx (from page 630). (13)