648 Higher Engineering Mathematics
Hence,cn=∫ 10te−j^2 πnt=uv−∫
vdu=[
te−j^2 πnt
−j 2 πn] 10−∫ 10e−j^2 πnt
−j 2 πndt=[
te−j^2 πnt
−j 2 πn−e−j^2 πnt
(−j 2 πn)^2] 10=(
e−j^2 πn
−j 2 πn−e−j^2 πn
(−j 2 πn)^2)−(
0 −e^0
(−j 2 πn)^2)From equation (2),cn=(
cos2πn−jsin2πn
−j 2 πn−cos2πn−jsin2πn
(−j 2 πn)^2)+1
(−j 2 πn)^2However, cos2πn=1andsin2πn=0 for all positive
and negative integer values ofn.Thus,cn=1
−j 2 πn−1
(−j 2 πn)^2+1
(−j 2 πn)^2=1
−j 2 πn=1 (j)
−j 2 πn(j)i.e. cn=j
2 πnFrom equation (13),c 0 =a 0 =1
L∫ L
2
−L 2f(t)dt=1
L∫L0f(t)dt=1
1∫ 10tdt=[
t^2
2] 10=[
1
2− 0]
=1
2Hence, the complex Fourier series is given by:f(t)=∑∞n=−∞cnej2 πnt
L from equation (11)i.e. f(t)=1
2+∑∞n=−∞j
2 πnej^2 πnt=1
2+j
2 π∑∞n=−∞ej^2 πnt
nProblem 3. Show that the exponential form of the
Fourier series for the waveform described by:f(x)={
0when− 4 ≤x≤ 0
10 when 0≤x≤ 4and has a period of 8, is given by:f(x)=∑∞
n=−∞5 j
nπ(cosnπ− 1 )ejnπx(^4).
From equation (12),
cn=
1
L
∫ L
2
−L 2
f(x)e−j
2 πLnx
dx
1
8
[∫ 0
− 4
0e−j
πnx 4
dx+
∫ 4
0
10e−j
πnx 4
dx
]
10
8
[
e−j
πnt
4
−jπ 4 n
] 4
0
10
8
(
4
−jπn
)[
e−jπn− 1
]
5 j
−j^2 πn
(
e−jπn− 1
)
5 j
πn
(
e−jπn− 1
)
From equation (2), e−jθ=cosθ−jsinθ, thus
e−jπn=cosπn−jsinπn=cosπn for all integer
values ofn. Hence,
cn=
5 j
πn
(
e−jπn− 1
)
5 j
πn
(cosnπ− 1 )
From equation (11), the exponential Fourier series is
given by:
f(x)=
∑∞
n=−∞
cnej
2 πnx
L
∑∞
n=−∞
5 j
nπ
(cosnπ−1)ej
nπx
4