656 Higher Engineering Mathematics
2 rad/s2 rad/sReal axisImaginary axis
024Figure 71.10negative direction) with an angular velocity of
2 rad/s. Both phasors have zero phase angle.
Figure 71.10 shows the two phasors.
(b) From equation (3), page 644,cosθ=1
2(
ejθ+e−jθ)Hence,v=8cos( 2 t− 1. 5 )= 8[
1
2(
ej(^2 t−^1.^5 )+e−j(^2 t−^1.^5 ))]=4ej(^2 t−^1.^5 )+4e−j(^2 t−^1.^5 )
i.e. v=4e^2 te−j1.5+4e−j^2 tej1.5This represents a phasor of length 4 and phase
angle−1.5 radians rotating anticlockwise (i.e. in
the positive direction) with an angular velocity of
2 rad/s, and another phasor of length 4 and phase
angle+1.5 radians and rotating clockwise (i.e. in
the negative direction) with an angular velocity of
2 rad/s. Figure 71.11 shows the two phasors.Real axis44Imaginary axis0 5 2 rad/s 5 2 rad/s1.5 rad
1.5 radFigure 71.11Problem 8. Determine – the pair of phasors that
can be used to represent the third harmonicv=8cos3t−20sin3t.Using cost=1
2(
ejt+e−jt)and sint=1
2 j(
ejt−e−jt)
from page 644gives: v=8cos3t−20sin3t= 8[
1
2(
ej^3 t+e−j^3 t)]− 20[
1
2 j(
ej^3 t−e−j^3 t)]=4ej^3 t+4e−j^3 t−10
jej^3 t+10
je−j^3 t=4ej^3 t+4e−j^3 t−10 (j)
j(j)ej^3 t+10 (j)
j(j)e−j^3 t=4ej^3 t+4e−j^3 t+ 10 jej^3 t− 10 je−j^3 tsincej^2 =− 1=( 4 +j 10 )ej^3 t+( 4 −j 10 )e−j^3 t( 4 +j 10 )=√
42 + 102 ∠tan−^1(
10
4)= 10. 77 ∠ 1. 19and( 4 −j 10 )= 10. 77 ∠− 1. 19Hence,v=10.77∠1.19+10.77∠−1.19Thusvcomprises a phasor 10.77∠1.19 rotating anti-
clockwise with an angular velocity if 3 rad/s, and a
phasor 10.77∠−1.19 rotatingclockwise with anangular
velocity of 3rad/s.