Essential formulae
Number and Algebra
Laws of indices:
am×an=am+nam
an=am−n (am)n=amnam
n=n√
am a−n=
1
ana^0 = 1Quadratic formula:
If ax^2 +bx+c=0thenx=−b±√
b^2 − 4 ac
2 aFactor theorem:
Ifx=ais a root of the equation f(x)=0, then(x−a)
is a factor off(x).
Remainder theorem:
If (ax^2 +bx+c) is divided by (x−p),the
remainder will be:ap^2 +bp+c.or if(ax^3 +bx^2 +cx+d)is divided by(x−p),the
remainder will be:ap^3 +bp^2 +cp+d.
Partial fractions:
Provided that the numeratorf(x)is of less degree than
the relevant denominator, the following identities are
typical examples of the form of partial fractions used:
f(x)(x+a)(x+b)(x+c)
≡A
(x+a)+B
(x+b)+C
(x+c)
f(x)(x+a)^3 (x+b)
≡A
(x+a)
+B
(x+a)^2
+C
(x+a)^3
+D
(x+b)f(x)
(ax^2 +bx+c)(x+d)≡Ax+B
(ax^2 +bx+c)+C
(x+d)Definition of a logarithm:
Ify=axthenx=logayLaws of logarithms:
log(A×B)=logA+logBlog(
A
B)
=logA−logBlogAn=n×logAExponential series:
ex= 1 +x+x^2
2!+x^3
3!+···
(valid for all values ofx)Hyperbolic functions:
sinhx=
ex−e−x
2cosechx=
1
sinhx=
2
ex−e−xcoshx=ex+e−x
2sechx=1
coshx=2
ex+e−xtanhx=ex−e−x
ex+e−x
cothx =1
tanhx
=ex+e−x
ex−e−xcosh^2 x−sinh^2 = 11 −tanh^2 x=sech^2 xcoth^2 x− 1 =cosech^2 x