Essential formulae 669
Simpson’s rule∫
ydx≈1
3(
width of
interval)[(
first+last
ordinate)+ 4(
sum of even
ordinates)+ 2(
sum of remaining
odd ordinates)]Differential Equations
First order differential equations:
Separation of variables
Ifdy
dx=f(x) theny=∫
f(x)dxIfdy
dx=f(y) then∫
dx=∫
dy
f(y)Ifdy
dx=f(x)·f(y) then∫
dy
f(y)=∫
f(x)dxHomogeneous equations:
IfP
dy
dx=Q,wherePandQare functionsof bothxand
yof the same degree throughout (i.e. a homogeneous
first order differential equation) then:
(i) RearrangePdy
dx=Qinto the formdy
dx=Q
P
(ii) Make the substitutiony=vx(wherevis a func-
tion ofx), from which, by the product rule,dy
dx=v( 1 )+xdv
dx(iii) Substitute for bothy anddy
dxin the equation
dy
dx=Q
P
(iv) Simplify, by cancelling, and then separate the
variables and solve using thedy
dx=f(x)·f(y)
method(v) Substitutev=y
xto solve in terms of the original
variables.Linear first order:
If
dy
dx+Py=Q,wherePandQare functions ofx
only (i.e. a linear first order differential equation), then
(i) determine the integrating factor, e∫
Pdx(ii) substitute the integrating factor (I.F.) into
the equationy(I.F.)=∫
(I.F.)Qdx(iii) determine the integral∫
(I.F.)QdxNumerical solutions of first order
differential equations:
Euler’s method: y 1 =y 0 +h(y′) 0
Euler-Cauchy method: yP 1 =y 0 +h(y′) 0and yC 1 =y 0 +1
2h[(y′) 0 +f(x 1 ,yp 1 )]Runge-Kutta method:
To solve the differential equationdy
dx=f(x,y)given
the initial conditiony=y 0 atx=x 0 for a range of
values ofx=x 0 (h)xn:- Identifyx 0 ,y 0 andh, and values ofx 1 ,x 2 ,x 3 ,...
- Evaluatek 1 =f(xn,yn)starting withn= 0
- Evaluatek 2 =f
(
xn+h
2,yn+h
2k 1)- Evaluatek 3 =f
(
xn+h
2,yn+h
2k 2)- Evaluatek 4 =f(xn+h,yn+hk 3 )
- Use the values determined from steps 2 to 5 to
evaluate:
yn+ 1 =yn+h
6{k 1 + 2 k 2 + 2 k 3 +k 4 }- Repeat steps 2 to 6 forn= 1 , 2 , 3 ,...
Second order differential equations:
Ifad^2 y
dx^2+bdy
dx+cy= 0 (wherea,bandcare con-
stants) then:
(i) rewrite the differential equation as
(aD^2 +bD+c)y= 0
(ii) substitutemforDandsolvetheauxiliaryequation
am^2 +bm+c= 0