60 Higher Engineering Mathematics
Whena=2andn=7:( 2 +x)^7 = 27 + 7 ( 2 )^6 x+( 7 )( 6 )
( 2 )( 1 )( 2 )^5 x^2+( 7 )( 6 )( 5 )
( 3 )( 2 )( 1 )( 2 )^4 x^3 +( 7 )( 6 )( 5 )( 4 )
( 4 )( 3 )( 2 )( 1 )( 2 )^3 x^4+( 7 )( 6 )( 5 )( 4 )( 3 )
( 5 )( 4 )( 3 )( 2 )( 1 )( 2 )^2 x^5+( 7 )( 6 )( 5 )( 4 )( 3 )( 2 )
( 6 )( 5 )( 4 )( 3 )( 2 )( 1 )( 2 )x^6+( 7 )( 6 )( 5 )( 4 )( 3 )( 2 )( 1 )
( 7 )( 6 )( 5 )( 4 )( 3 )( 2 )( 1 )x^7i.e.(2+x)^7 = 128 + 448 x+ 672 x^2 + 560 x^3
+ 280 x^4 + 84 x^5 + 14 x^6 +x^7Problem 4. Use the binomial series to determine
the expansion of( 2 a− 3 b)^5.From equation (1), the binomial expansion is given by:(a+x)n=an+nan−^1 x+n(n− 1 )
2!an−^2 x^2+n(n− 1 )(n− 2 )
3!an−^3 x^3 +···Whena= 2 a,x=− 3 bandn=5:( 2 a− 3 b)^5 =( 2 a)^5 + 5 ( 2 a)^4 (− 3 b)+( 5 )( 4 )
( 2 )( 1 )( 2 a)^3 (− 3 b)^2+( 5 )( 4 )( 3 )
( 3 )( 2 )( 1 )( 2 a)^2 (− 3 b)^3+( 5 )( 4 )( 3 )( 2 )
( 4 )( 3 )( 2 )( 1 )( 2 a)(− 3 b)^4+( 5 )( 4 )( 3 )( 2 )( 1 )
( 5 )( 4 )( 3 )( 2 )( 1 )(− 3 b)^5i.e. ( 2 a− 3 b)^5 = 32 a^5 − 240 a^4 b+ 720 a^3 b^2
− 1080 a^2 b^3 + 810 ab^4 − 243 b^5Problem 5. Expand(
c−1
c) 5
using the binomial
series.(
c−1
c) 5
=c^5 + 5 c^4(
−1
c)+( 5 )( 4 )
( 2 )( 1 )c^3(
−1
c) 2+
( 5 )( 4 )( 3 )
( 3 )( 2 )( 1 )c^2(
−
1
c) 3+
( 5 )( 4 )( 3 )( 2 )
( 4 )( 3 )( 2 )( 1 )c(
−
1
c) 4+( 5 )( 4 )( 3 )( 2 )( 1 )
( 5 )( 4 )( 3 )( 2 )( 1 )(
−1
c) 5i.e.(
c−1
c) 5
=c^5 − 5 c^3 + 10 c−10
c
+5
c^3
−1
c^5Problem 6. Without fully expanding( 3 +x)^7 ,
determine the fifth term.Ther’th term of the expansion(a+x)nis given by:
n(n− 1 )(n− 2 )...to(r− 1 )terms
(r− 1 )!an−(r−^1 )xr−^1Substitutingn=7,a=3andr− 1 = 5 − 1 =4gives:
( 7 )( 6 )( 5 )( 4 )
( 4 )( 3 )( 2 )( 1 )( 3 )^7 −^4 x^4i.e. the fifth term of( 3 +x)^7 = 35 ( 3 )^3 x^4 = 945 x^4Problem 7. Find the middle term of
(
2 p−1
2 q) 10
.In the expansion of(a+x)^10 there are 10+1, i.e. 11
terms. Hence the middle term is the sixth. Using the
general expression for ther’th term wherea= 2 p,
x=−1
2 q,n=10 andr− 1 =5gives:( 10 )( 9 )( 8 )( 7 )( 6 )
( 5 )( 4 )( 3 )( 2 )( 1 )( 2 p)10–5(
−1
2 q) 5= 252 ( 32 p^5 )(
−1
32 q^5)Hence the middle term of(
2 p−1
2 q) 10
is− 252p^5
q^5Problem 8. Evaluate( 1. 002 )^9 using the binomial
theorem correct to (a) 3 decimal places and (b) 7
significant figures.