70 Higher Engineering Mathematics
f(x)=sinxf( 0 )=sin0= 0
f′(x)=cosxf′( 0 )=cos0= 1
f′′(x)=−sinxf′′( 0 )=−sin0= 0
f′′′(x)=−cosxf′′′( 0 )=−cos0=− 1
fiv(x)=sinxfiv( 0 )=sin0= 0
fv(x)=cosxfv( 0 )=cos0= 1fvi(x)=−sinxfvi( 0 )=−sin0= 0
fvii(x)=−cosxfvii( 0 )=−cos0=− 1
Substitutingthe above values into Maclaurin’s series of
equation (5) gives:sinx= 0 +x( 1 )+x^2
2!( 0 )+x^3
3!(− 1 )+x^4
4!( 0 )+x^5
5!( 1 )+x^6
6!( 0 )+x^7
7!(− 1 )+······i.e.sinx=x−x^3
3!+x^5
5!−x^7
7!+ ···Problem 4. Using Maclaurin’s series, find the
first five terms for the expansion of the function
f(x)=e^3 x.f(x)=e^3 x f( 0 )=e^0 = 1f′(x)=3e^3 x f′( 0 )=3e^0 = 3f′′(x)=9e^3 x f′′( 0 )=9e^0 = 9f′′′(x)=27e^3 x f′′′( 0 )=27e^0 = 27fiv(x)=81e^3 x fiv( 0 )=81e^0 = 81Substitutingthe above values into Maclaurin’s series of
equation (5) gives:e^3 x= 1 +x( 3 )+x^2
2!( 9 )+x^3
3!( 27 )+x^4
4!( 81 )+······e^3 x= 1 + 3 x+9 x^2
2!+27 x^3
3!+81 x^4
4!+···i.e. e^3 x= 1 + 3 x+9 x^2
2
+9 x^3
2
+27 x^4
8
+···Problem 5. Determine the power series for tanx
as far as the term inx^3.f(x)=tanxf( 0 )=tan0= 0f′(x)=sec^2 xf′( 0 )=sec^20 =1
cos^20= 1f′′(x)=(2secx)(secxtanx)=2sec^2 xtanxf′′( 0 )=2sec^2 0tan0= 0f′′′(x)=(2sec^2 x)(sec^2 x)+(tanx)(4secxsecxtanx),by the
product rule,=2sec^4 x+4sec^2 xtan^2 xf′′′( 0 )=2sec^40 +4sec^2 0tan^20 = 2Substituting these values into equation (5) gives:f(x)=tanx= 0 +(x)( 1 )+
x^2
2!( 0 )+
x^3
3!( 2 )i.e. tanx=x+1
3x^3Problem 6. Expand ln( 1 +x)to five terms.f(x)=ln( 1 +x) f( 0 )=ln( 1 + 0 )= 0f′(x)=1
( 1 +x)f′( 0 )=1
1 + 0= 1f′′(x)=− 1
( 1 +x)^2f′′( 0 )=− 1
( 1 + 0 )^2=− 1f′′′(x)=2
( 1 +x)^3f′′′( 0 )=2
( 1 + 0 )^3= 2fiv(x)=− 6
( 1 +x)^4fiv( 0 )=− 6
( 1 + 0 )^4=− 6fv(x)=
24
( 1 +x)^5fv( 0 )=
24
( 1 + 0 )^5= 24