118 The Quantum Structure of Space and Time
[lo] Z. Bern, L. J. Dixon and D. A. Kosower, N = 4 super-Yang-Mills theory, QCD and
collider physics, Comptes Rendus Physique 5, 955 (2004) [arXiv:hep-th/O410021].
[ll] C. Vafa and E. Witten, A Strong coupling test of S duality, Nucl. Phys. B 431, 3
(1994) [arXiv:hep-th/9408074].
[12] N. Seiberg, Electric - magnetic duality in supersymmetric non Abelian gauge theories,
Nucl. Phys. B 435, 129 (1995) [arXiv:hep-th/9411149].
[13] N. Seiberg, in this volume.
[14] G. 't Hooft, Dimensional reduction in quantum gravity, arXiv:gr-qc/9310026.
L. Susskind, The world as a hologram, J. Math. Phys. 36, 6377 (1995) [arXiv:hep-
th/9409089].
[15] E. Witten, (2+l)-Dimensional gravity as an exactly soluble system, Nucl. Phys. B
311, 46 (1988).
[16] A. Ashtekar, New variables for classical and quantum gravity, Phys. Rev. Lett. 57
(1986) 2244.
[17] R. Dijkgraaf, S. Gukov, A. Neitzke and C. Vafa, Topological M-theory as unifica-
tion of form theories of gravity, Adv. Theor. Math. Phys. 9, 593 (2005) [arXiv:hep-
th/0411073].
[18] B. Zwiebach, Closed string field theory: quantum action and the B- V master equation,
Nucl. Phys. B390 (1993) 33-152, hep-th/9206084.
[19] G. Segal, The definition of conformal field theory, preprint; Two dimensional confor-
mal field theories and modular functors, in IXth International Conference on Mathe-
matical Physics,. B. Simon, A. Truman and I.M. Davies Eds. (Adam Hilger, Bristol,
1989).
[20] R. Dijkgraaf, Les Houches Lectures on Fields, Strin,gs and Duality, in Quantum Sym-
metries, les Houches Session LXIV, Eds. A. Connes, K. Gawedzki, and J. Zinn-Justin,
North-Holland, 1998, hep-th/9703 136.
[21] P. Candelas, P. Green, L. Parke, and X. de la Ossa, A pair of Calabi-Yau manifolds
as an exactly soluble superconformal field theory, Nucl. Phys. B359 (1991) 21, and
in [2].
[22] J. Polchinski, Dirichlet-branes and Ramond-Ramond charges, Phys. Rev. Lett. 75
(1995) 4724-4727, hep-th/9510017.
[23] J. Maldacena, The large N limit of superconformal field theories and supergravity,
Adv. Theor. Math. Phys. bf 2 (1998) 231-252, hep-th/9711200.
[24] E. Witten, String theory in various dimensions, Nucl. Phys. B 443 (1995) 85, hep-
th/9503124.
[25] A. Okounkov, N. Reshetikhin and C. Vafa, Quantum Calabi-Yau and classical crys-
tals, arXiv:hep-th/0309208.
A. Iqbal, N. Nekrasov, A. Okouukov and C. Vafa, Quantum foam and topological
strings, arXiv: hep-t h/03 12022.
[26] E. Witten, Bound states of strings and p-branes, Nucl. Phys. B460 (1996) 335, hep-
th/9510135.
[27] M. Douglas, Branes within branes, hep-th/9512077.
[28] M. Green, J. Harvey, and G. Moore, I-brane inflow and anomalous couplings on
D-branes, Class. Quant. Grav. 14 (1997) 47-52, hep-th/9605033.
[29] E. Witten, D-branes and K-theory, JHEP 9812 (1998) 019, hep-th/9810188.
[30] L. Gottsche, The Betti numbers of the Hilbert scheme of points on a smooth projective
surface, Math. Ann. 286 (1990) 193-207; Hilbert Schemes of Zero-dimensional Sub-
schemes of Smooth Varieties, Lecture Notes in Mathematics 1572, Springer-Verlag,
1994.