CHAP. 8: CHEMICAL EQUILIBRIUM [CONTENTS] 247
we obtain
lnK(T 2 ) = lnK(T 1 )−
1
R
[
A
( 1
T 2
−
1
T 1
)
−∆aln
T 2
T 1
−
∆b
2
(T 2 −T 1 )−
∆c
6
(
T 22 −T 12
)
−
∆d
2
(
1
T 22
−
1
T 12
)]
, (8.21)
whereT 1 denotes the temperature at which we know the value of the equilibrium constant,
A= ∆rH◦(To)−∆aTo−
∆b
2
To^2 −
∆c
3
To^3 +
∆d
To
,
∆rH◦(To) is the value of the standard reaction enthalpy at temperatureToa ∆a=
∑k
i=1νiai,
∆b=
∑k
i=1νibi,∆c=
∑k
i=1νici,∆d=
∑k
i=1νidi.
Example
Calculate the equilibrium constant of butane(1) isomerization to 2-methylpropane(2) at 500 K if
the equilibrium constant for this reaction at 300 K is 4.5 (standard state: ideal gas at the
temperature of the system and a pressure of 101.325 kPa).
Input data: ∆rH◦=−8.368 k J mol−^1 atT = 298 K,Cpm,◦ 1 = 123.1 J mol−^1 K−^1 andCpm,◦ 2 =
123.37 J mol−^1 K−^1.
Solution
∆Cp= 0.27 J mol−^1 K−^1 ,
∆rH◦(T) =∆rH◦(298) +∆Cp(T−298) =−8448.46 + 0.27T. Substitution to (8.19) and
integration yields
lnK(500) = lnK(300) +
8448. 46
R
( 1
500
−
1
300
)
+
0. 27
R
ln
500
300
= 1.504 + 1016. 2
(
1
500
−
1
300
)
+ 0.0325 ln
500
300
.
From this we obtainK(500) = 1. 180.