CHAP. 9: CHEMICAL KINETICS [CONTENTS] 319
Solution
We take the logarithm of equation (9.164) and substitute forTi,kilnk 1 = ln(
RT 1 cst
NAh)
+∆S
R
−
∆H
RT 1
,
lnk 2 = ln(
RT 2 cst
NAh)
+∆S
R
−
∆H
RT 2
The solution of this set of two equations for two unknowns is∆H#=R
T 1 T 2
T 2 −T 1
lnT 1 k 2
T 2 k 1= 8. 314
556 · 781
781 − 556
ln556 · 3. 954 · 10 −^2
781 · 3. 517 · 10 −^7
= 181 160J mol−^1 ,∆S# =
∆H
T 1
+Rlnk 1 NAh
RT 1 cst=
=
181 160
556
+ 8.314 ln3. 517 · 10 −^7 · 6. 022 · 1023 · 6. 626 · 10 −^34
8. 314 · 556 · 1
=
= − 47. 814 J mol−^1 K−^1.9.6.5 General relation for temperature dependence of the rate constant
The temperature dependence of the rate constant may be written in the form
k=a Tbe−c/T. (9.165)The relations discussed in the preceding sections are special cases of this dependence. Forb= 0
we obtain the Arrhenius equation (9.159), wherea=Aandc=E∗/R. Forb= 1/2 we obtain
the relation (9.162) from the collision theory, wherea=Aandc=B. Forb= 1 we obtain the
relation (9.164) from the absolute-rates theory, wherea= (cst)(n−1)NRAhexp(∆S#/R) andc=
∆H#/R.