CHAP. 3: FUNDAMENTALS OF THERMODYNAMICS [CONTENTS] 96
Solution
We use equation (3.75) which at constant temperature simplifies toH(T, p) =H◦(T) +∫p0
V−T(
∂V
∂T)p
dp.From the given equation of state we express the volumeV=
nRT
p+nB ,its derivative with respect to temperature
(
∂V
∂T)p=
nR
p+ndB
dTand the expression
V−T(
∂V
∂T)p=n(
B−TdB
dT)
,which we substitute into the relation for the pressure dependence of enthalpy, and integrateH(T, p) =H◦(T) +∫p0n(
B−TdB
dT)
dp=H◦(T) +n(
B−TdB
dT)
p.3.5.4 Entropy
3.5.4.1 Temperature and volume dependence for a homogeneous system
By integrating the total differential (3.48) with respect to the general prescription (3.30) we
obtain
S(T, V) =S(T 1 , V 1 ) +∫TT 1CV(T, V 1 )
T
dT+∫VV 1(
∂p
∂T)VdV. (3.79)