3.2. ANALYSIS ON RIEMANNIAN MANIFOLDS 129
3) the Laplace operator:DkDk=div·∇,
4) the Laplace-Beltrami operator:∆=dδ+δd,
5) the wave operator:=DμDμ, withDμbeing the 4-D gradient operator.
We now give a detailed account on the above operators.
1.Gradient operator.The gradient operator∇is a mapping of the following types:
(3.2.20)
∇k:W^1 ,p(TrkM)→Lp(Trk+^1 M),
∇k:W^1 ,p(TrkM)→Lp(Trk+ 1 M),
and∇kand∇khave the relation
∇k=gkl∇l, ∇k=gkl∇l,
and{gkl}the Riemann metric ofM.∇is expressed as
(3.2.21)
∇k= (D 1 ,···,Dn),
Djthe covariant derivative operators.
2.Divergence operator.The divergence operator div is a mapping of the following types:
(3.2.22)
div :W^1 ,p(Trk+^1 M)→Lp(TrkM),
div :W^1 ,p(Trk+ 1 M)→Lp(TrkM).
ForT={Tji 11 ······ijkr+^1 } ∈W^1 ,p(Trk+^1 M)andT={Tji 11 ······ijrk+ 1 } ∈W^1 ,p(Trk+ 1 M),
(3.2.23)
divT=DilTji 11 ······ijlr···ik+^1 , and
divT=DjlTji 11 ······ijkl···jk+ 1
Asu∈W^1 ,p(TM)andu∈W^1 ,p(T∗M), we can give the expressions of divuin the
following.
Letu∈W^1 ,p(TM),u= (u^1 ,···,un). Then by (3.2.23),
divu=Dkuk=
∂uk
∂xk
+Γkk juj.
By the Levi-Civita connections (2.3.25), the contraction
Γkk j=
1
2
gkl
∂gkl
∂xj
=
1
2 g
∂g
∂xj
=
1
√
−g
∂
√
−g
∂xj
,
hereg=det(gij). Thus we have
(3.2.24) divu=
∂uk
∂xk
+
1
√
−g
∂
√
−g
∂xk
uk=
1
√
−g
∂(
√
−guk)
∂xk